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Abstract

In this workshop, we extend on our work pre-
sented in (Ochoa et al., 2021). Specifically, we
study tools for the analysis of robustness certifi-
cates for computationally-aware dual-based dis-
tributed optimization algorithms over networks.
Contrary to existing literature, we follow a hy-
brid dynamical systems approach to analyze the
stability properties of the distributed Nesterov’s
ODE, by explicitly taking into account the com-
putational resources and time required by a dual
first-order oracle to generates an approximate gra-
dient. We show that, in such scenario, the dis-
tributed Nesterov’s ODE can be rendered unsta-
ble under arbitrarily small disturbances, i.e., there
exist an arbitrarily bounded perturbation function
for which the inexact Oracle drives the system
unstable. Moreover, we study modified dynamics
that are provable stable and robust, and which also
minimize smooth and strongly convex functions
with suitable acceleration properties.

1. Introduction

The area of Cyber-Physical Systems (CPS) has emerged as
a general discipline that studies complex dynamical systems
that incorporate computation, control, and communication
technologies. The application of CPS spans several domains,
from autonomous driving and intelligent transportation sys-
tems to deep-space exploration, quantum computing, and
machine learning. However, traditionally, the algorithmic
design and the implementation of CPS algorithms have
been studied separately. While this approach facilitates the
theoretical analysis of the system, it naturally poses crit-
ical issues when deploying the designed systems in their
intended domain, i.e., the physical world.
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For instance, the study of distributed optimization prob-
lems over networks usually neglects the computational time
needed by the nodes to perform local auxiliary operations.
While small-scale optimization problems can usually be
studied under enough time scale separation between com-
munication and computation dynamics, for large-scale prob-
lems this approach is usually unfeasible. Thus, there is a
critical need to design high-performance optimization algo-
rithms that can be safely deployed over different types of
infrastructures with practical computational limitations.

Motivated by the previous background, in this workshop
we investigate the stability and performance properties of
a certain distributed accelerated gradient algorithms imple-
mented over networks with limited computational resources.
In particular, we study the convergence properties of the
interconnection between a class of recently proposed Accel-
erated Restarting Distributed Dynamics (HARDD) (Ochoa
et al., 2020) and local computational blocks assigned to the
nodes of the network to generate estimates of the gradients.

2. Problem Statement

We study distributed accelerated gradient algorithms for
the solution of multi-agent optimization problems. The
algorithms are deployed over networks characterized
by connected and undirected graphs G:=(V, &), where
V={1,2,...,n} is the set of nodes, and ECV x V is the set
of edges. We consider the setting where each node ¢ has a lo-
cal smooth and strongly convex function f; : RP :— R, and
the nodes cooperate with each other to find a common point
z* € RP that minimizes a global function defined as the
summation of the local costs. This distributed optimization
problem can be written as

ZERMP

min F(z) = ij,(zi), s.t. Lz =0, 1)
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where z = [z 29, ,21]T € R, z; € Ris a lo-
cal estimate of the network state z for every node ¢ € V,
L:=L ® I, € R" x R"P is called the interaction matrix,
and L is the Laplacian matrix of the graph G that encodes

the sparsity of the network.

Discrete-time and continuous-time approaches to solve
Problem (1) have been extensively studied using gradient
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descent and Newton-based methods (Mokhtari et al., 2017),
primal-dual dynamics (Cortes & Niederlander, 2019), and
projected dynamics (Nedic et al., 2010). However, a persis-
tent challenge in the solution of (1) is to achieve fast rates of
convergence without sacrificing essential robustness proper-
ties of the algorithms. To address this challenge, in (Ochoa
et al., 2020), the authors introduced a class of distributed
restarting-based accelerated dynamics using the formalism
of hybrid dynamical systems. The algorithm is inspired by
Nesterov’s ODE (Su et al., 2016), which induces suitable
acceleration properties for smooth convex cost functions,
but which, as shown in (Poveda & Li, 2019), may suffer
from instability under small disturbances. By using the
formalism presented in (Ochoa et al., 2020; 2021), the op-
timization Problem (1) can be studied in the dual domain
by leveraging the so-called dual-friendly functions (Uribe
et al., 2020), i.e., functions for which explicit minimiza-
tion of their Legendre-Fenchel conjugate can be computed.
Moreover, the computation of the gradient of the Lagrangian
dual function can be carried out locally in each node of the
network. However, in order to establish suitable accelera-
tion properties while maintaining stability, the time taken
by such computations was ignored in the analysis of the
HARDD algorithm of (Ochoa et al., 2020).

This work builds on the preliminary results presented
in (Ochoa et al., 2020), and aims to incorporate the compu-
tational time needed by the nodes of the network to obtain
an e-approximation of the local gradients. In particular, we
model the interconnection between the accelerated gradi-
ent dynamics and the local computational mechanisms as
sampled-data systems with sampling times related to the
iterations needed by the nodes to obtain suitable approxima-
tions of the gradients. By leveraging this formalism, as well
as Lyapunov-based tools for hybrid dynamical systems, we
study the minimum sampling time needed by the distributed
accelerated optimization dynamics to preserve stability and
to guarantee convergence to the solution of Problem (1).

3. Main Results

The main ideas behind the analysis are illustrated in Fig-
ure 1. In particular, as shown in the figure, we assign an
output state n=[n1,...,7;,...,Ny,] to the Gradient Compu-
tational Block, where 7); is computed by the i node of the
network and is assumed to converge, in finite-time, to an e-
approximation of the true gradient of the dual cost function,
and it , i.e., on compact sets, and for £ >0 there exists J;€EN
such that n; (.J;) satisfies |n;(J;) — h;(Lx)|<e, with

h(Lx) := arg max {(Lx, z) —F(z)} . 2)

zcR"P

The state 7 serves as input to the accelerated optimization

dynamics of the nodes, which are given (in vector form) by

2D(7)" (y = x)
Vx|, O

§1n

p="ralp)=a:

where a€ {0, 1}, and ¥ (7, x):=LD(7T ® 1,)n. The logic
state «v is used to model “active” and “in-active” modes,
which are assigned depending on the current state of the
Gradient Computational Block. We model the intercon-
nected system as a sampled-data system where the modified
HARDD algorithm now plays the role of the plant, and the
local Gradient Computers plays the role of the controller.
The resulting closed-loop system combines continuous-time
dynamics and discrete-time dynamics, and therefore it is
naturally modeled as a set-valued hybrid dynamical sys-
tem (Goebel et al., 2012). For this closed-loop system,
suitable stability, convergence, and robustness properties
can be established by using Lyapunov functions for acceler-
ated gradient flows, and the hybrid invariance principle. To
do so, we leverage the properties of the Lyapunov function
used in (Ochoa et al., 2020) to characterize robustness mar-
gins for the nominal HARDD and formulate the modified
HARDD as a perturbed version of the nominal dynamics to
establish two main results:

* Main Result 1: On compact sets, for every € > 0 and
each sampling period 7' > 0, there exists a bounded
perturbation function satisfying ||d:(T)|| < e such
that the distributed Nesterov’s ODE is unstable for
an inexact dual first-order oracle h(Lx(t)) + d¢(T),
c.f. (2).

e Main Result 2: There exists a 7* > 0 such that
for each sampling time 7' € (0,7™), the closed-
loop sampled-data system composed by the modified
HARDD and the Gradient Computational blocks in (3)
is stable, robust, and the closed-loop system solves
Problem (1), modulo a small residual error.

Finally, we note that the implementation of continuous-time
gradient flows to model the distributed gradient-based opti-
mization dynamics is motivated by the availability of gen-
eral theoretical tools for the stability and robustness analysis
of continuous-time and sampled-data systems. However,
discrete-time results can be obtained by using discretization
mechanisms with sufficiently small step-sizes, which have
been shown to preserve the convergence properties of well-
posed hybrid dynamical systems (in a semi-global practical
sense); see (Sanfelice & Teel, 2010, Thm. 2).

Sketch of the Proof of Main Result 1: Consider a dis-
tributed version of Nesterov’s ODE (Su et al., 2016) imple-
mented in a sampled-data structure with an inexact Oracle
having sampling time 7'. Let t;, = to + kI, be the sampling
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(a) The distributed optimization problem. Each node
of the network has a local smooth and strongly con-
vex function f;. The objective is to minimize the
sum of the individual functions. Each agent has
access to approximate dual oracles.

Distributed Accelerated Gradient Flow
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(b) The hybrid dynamical systems view of the dis-
tributed optimization problem over networks. The
HARDD dynamics is a continuous dynamics sys-
tems with a feedback loop driven by an approximate
sampled dual first-order oracle.

Figure 1. The interconnection with the gradient computers is studied as a sampled-dynamical system where the result of the computation
is sampled periodically and fed back into the distributed gradient system

times, where k € Z>(. The evolution in time of Nesterov’s
ODE with the inexact oracles, between times (¢, tx+1), is
then given by

5(1 (t) = X9 (t) (48.)
%o (1) = —%xm — La(ty) (4b)
F=1, (4c)

where n(tx) = h(Lx(tx)) + di(T). Suppose that he primal
cost function is given by F(z) = Zfil |z;|2. Tt follows
that h(Lx;) = LI'x; for some positive definite matrix T
Under these assumptions, system (4) is reduced to

5(1 (t) = X9 (t) (Sa)

o (1) = f%@(t) — AL2Txy (t) + d(T).  (5b)

Suppose the solutions of (5) are defined for all £ > 0, and
that x(0,0) € K, with K C R™ a compact set. Addition-
ally, assume that x5 remains uniformly bounded, otherwise
there is nothing to prove. We claim that, the origin of Sys-
tem (5) is not uniformly attractive no matter how small we
select T' > 0. Indeed, let ¢ > 0 be given. Then, there exists
T* such that for all ¢ > T the damping term in (5) satisfies

Xz(t)’ <e (6)

for all ¢ > T*. It follows that System (5) behaves as a

perturbed system of the form

5(1 (t) = X9 (f) (78.)
%o(t) € —yL2Tx; (t) + dg (T) + e(t), (7b)

where ||e(t)|| < 2e. When d(T) + 2¢ = 0, system (7)
behaves as a marginally stable system. Since the system is
marginally stable, no matter how small we select e(t) the
dynamics can be rendered unstable.

Sketch of the Proof of Main Result 2: We take inspira-
tion from the work presented in (Sanfelice & Teel, 2006).
Particularly, in order to account for the interconnection
between the dual Oracles and the HARDD algorithm de-
scribed in Figure 1b, we define the ¢ == (z, 1, s), where x
is the state of the HARDD optimization dynamics, 7} rep-
resents the truncated computation of the local gradients,
and s € [0,T] is the timer variable that conditions when
the information is fed-back to the optimization dynamics.
Moreover, we describe the hybrid dynamics of 1 by using
the system proposed in Example 2.14 of (Sanfelice, 2021),
which corresponds to a sample-and-hold system connecting
a hybrid plant, in this case the nominal HARDD, with a
state-feedback controller, which in our setup corresponds
to the state 7). Since uniform global asymptotic stability
was proven in (Ochoa et al., 2020) for the set of minimizers
of the cost function F(z), and the HARDD dynamics are
well-posed by design, existence of a smooth Lyapunov func-
tion V : R” — R is guaranteed for the nominal hybrid
dynamics. Using this nominal Lyapunov function, we define

W () = eV (),
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Figure 2. Instability of (4) under interconnection with inexact dual
first-order oracle (top). The instability can be addressed by imple-
menting a hybrid-regularized version of the system, and imposing
a suitable sampling period T (bottom).

as a Lyapunov function candidate for the interconnected
sample-and-hold system, and leverage the properties of V/
during the flows and jumps of the nominal HARDD dy-
namics. We prove that, for every compact set of initial
conditions, there exists a sufficiently small sampling period
T, for which the stability and convergence properties of
the nominal dynamics are preserved in a practical sense as
T—0.

4. Conclusions

In this workshop, we continue to study the robustness prop-
erties of distributed accelerated gradient flows with respect
to computational limitations in oracles that generate evalua-
tions of the gradients. We first show that standard acceler-
ated ODEs with vanishing damping have zero-margins of
robustness with respect to arbitrarily small gradient errors.
This observation motivates the development of alternative
computation-aware algorithms for which suitable robust-
ness properties can be established under a general class of
Gradient Computational Models. The alternative algorithms
are synthesized and analyzed using tools from hybrid dy-
namical systems theory and graph theory. Ongoing research
includes the exploration of an adaptive sampling time that
takes into account local computational limitations, as well
as asynchronous sampling of the local gradients.

References

Cortes, J. and Niederlander, S. K. Distributed coordination
for nonsmooth convex optimization via saddle-point dy-
namics. Journal of Nonlinear Science, 29:1247-1272,
2019.

Goebel, R., Sanfelice, R. G., and Teel, A. R. Hybrid Dy-
namical Systems: Modeling, Stability, and Robustness.

Princeton University Press, 2012.

Mokhtari, A., Ling, Q., and Ribeiro, A. Network Newton
distributed optimization methods. IEEE Transactions on
Signal Processing, 65:146-161, 2017.

Nedic, A., Ozdaglar, A., and Parrilo, P. Constrained con-
sensus and optimization in multi-agent networks. /[EEE
Trans. Autom. Contr., 55:922-938, 2010.

Ochoa, D. E., Poveda, J. 1., Uribe, C. A., and Quijano,
N. Robust optimization over networks using distributed
restarting of accelerated dynamics. /EEE Control Systems
Letters, 5(1):301-306, 2020.

Ochoa, D. E., Poveda, J. 1., and Uribe, C. A. Computation-
aware distributed optimization over networks: A hybrid
dynamical systems approach. Workshop on Computation-
Aware Algorithmic Design for Cyber-Physical Systems,
May 2021.

Poveda, J. I. and Li, N. Inducing uniform asymptotic stabil-
ity in non-autonomous accelerated optimization dynamics
via hybrid regularization. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pp. 3000-3005. IEEE,
2019.

Sanfelice, R. G. Hybrid Feedback Control. Princeton Uni-
versity Press, 2021.

Sanfelice, R. G. and Teel, A. R. Lyapunov analysis of
sample-and-hold hybrid feedbacks. In Proceedings of
the 45th IEEE Conference on Decision and Control, pp.
4879-4884. IEEE, 2006.

Sanfelice, R. G. and Teel, A. R. Dynamical properties of
hybrid systems simulators. Automatica, 46(2):239-248,
2010.

Su, W., Boyd, S., and Candes, E. A differential equation for
modeling Nesterov’s accelerated gradient method: The-

ory and insights. Journal of Machine Learning Research,
17(153):1-43, 2016.

Uribe, C. A., Lee, S., Gasnikov, A., and Nedié, A. A dual
approach for optimal algorithms in distributed optimiza-
tion over networks. Optimization Methods and Software,
pp. 1-40, 2020.



