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Abstract

We study a Wasserstein attraction approach for
solving dynamic mass transport problems over
networks. In the transport problem over networks,
we start with a distribution over the set of nodes
that needs to be “transported” to a target distri-
bution accounting for the network topology. We
exploit the specific structure of the problem, char-
acterized by the computation of implicit gradient
steps, and formulate an approach based on dis-
cretized flows. As a result, our proposed algo-
rithm relies on the iterative computation of con-
strained Wasserstein barycenters. We show how
the proposed method finds approximate solutions
to the network transport problem, taking into ac-
count the topology of the network, the capacity of
the communication channels, and the capacity of
the individual nodes.

1. Introduction

Optimal transport (OT) theory has experienced increased
interest over the last few years, due to its wide range of
applications in both theoretical and applied fields of math-
ematics (Villani, 2008). In particular, the recent efforts to
overcome the high computational cost of the associated lin-
ear programming problem (Cuturi, 2013), has made OT an
attractive choice to tackle problems involving a large num-
ber of distributions or other high dimensional objects, and
requiring a high desired accuracy.

Our work focuses on the discrete OT problem, where prob-
ability distributions are defined over the nodes of a finite
graph. In classical OT approaches, it is assumed that mass
(or a fraction of it) at each point in the support of one of the
probability measures can be sent to any of the elements in
the support of the other probability measure. As a result,
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the transport plan is executed effectively in one step. Con-
trary to existing literature, we seek to explicitly consider the
topology of the underlying graph, which naturally imposes
some transportation constraints. Adding the topology of the
graph as a constraint means that there may not be a direct
link between two points in the support, as the edges of the
graph directly determine links. Therefore, our goal is to
find a sequence of transport plans that move the mass from
an initial distribution to a final one along the edges of a
connected graph so that the cost of transportation is minimal
while accounting for channel and node capacities.

Finding the amount of mass that needs to be sent through
each edge, so that the total cost of transportation is mini-
mal, is a well-known problem called the minimum-cost flow
problem. This problem has been widely studied and differ-
ent algorithms have been proposed to solve it (Ahuja et al.,
1993). More importantly, the Wasserstein distance can be
rewritten as a minimum-cost flow problem. However, clas-
sical methods to solve this problem do not have a system to
discern between paths when the optimal flow is not unique.
This nonuniqueness leads to unpredictability of the output
from the solver since many paths can be indistinguishable
in terms of costs. To avoid that case, some algorithms in-
troduce an additional term to the objective function so that
it becomes strongly convex. These regularized OT meth-
ods, like the well-known Sinkhorn algorithm (Cuturi, 2013),
achieve uniqueness and significantly speed up the compu-
tation, compared to solving a large linear programming
problem, but it is at the cost of finding an approximation of
the solution to the original problem.

Our approach is based on the solution of the Wasserstein
attraction problem, which requires the computation of a
Wasserstein barycenter (WB) of two distributions at every
iteration. Computing the WB yields an intermediate distri-
bution, defined as the Fréchet mean of the two measures,
which is the result of minimizing the sum of the distances
between itself and each of the two distributions (Cuturi &
Doucet, 2014). However, the support of this resulting distri-
bution can include any of the graph nodes. We expand the
definition of the WB problem by adding constraints that en-
sure the mean obtained has the appropriate support and each
node does not receive more mass than the amount available
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from its neighbors. The closest works to our setting with
constrained WB are (Peyré, 2015; Cuturi & Peyré, 2016).
The former presents a framework to approximate gradient
flows for Wasserstein metrics by computing discrete entropy-
regularized flows, which are computed as JKO flows. In
particular, it introduces the concept of Wasserstein attrac-
tion, which is used in our work. The latter complements
this previous work while focusing on the dual formulation
of Wasserstein variational problems.

The main contributions of this paper are twofold: first, we
propose the mathematical formulation of a Wasserstein
attraction-like problem to solve mass transport problems
over networks by writing them as the computation of a
WB problem with additional constraints. And second, we
present a methodology to find an approximation of optimal
discrete flows over networks based on Dykstra’s projection
algorithm and the computation of proximal operators for the
Kullback-Leibler divergence.

Notation: The column vector of all ones is denoted by 1
and [ is the identity matrix. The adjacency matrix of a
graph is denoted by A, and we will write A = A 4 I when
considering the connection of one node to itself. R, and
R refer to non-negative and strictly positive real values
respectively. Given two matrices A, B € R"*™ (A, B) =
> i A;;B;j. We define the support of a function (or vector)
pas SUPP(p) = {i | p(i) > 0}. We denote KL(7|¢) as the
Kullback-Leibler divergence between m € R*™ and £ €
R?_in, defined as KL(7T|£) = ZZj:l T4 In (Wij/gij) —
mi;j + &ij, with the convention 01In(0) = 0. Finally, the
indicator function of a set C is defined as tc(z) = 0 if
x € C, and (¢ () = +o0 otherwise.

2. Problem Statement: Discrete Flows and
Wasserstein Attraction on Graphs

2.1. Discrete Flows on Graphs

Consider a discrete, finite, fixed and connected graph
G = (V,E), where V isasetof nnodes V = (1,--- ,n),
and F is a set of directed edges suchthat £ C V x V|,
where (j,i7) € E if and only if there is an edge between
the node 7 € V and node ¢ € V. Denote the probability
simplex on V as Prob(V) = {u € R} | >, pu(x) = 1}.
The set of edges E has an associated weight function
c: E — R, where each edge e € E has a correspond-
ing weight c. = ¢(e), i.e., the cost of sending a unit of mass
using the edge e. Furthermore, endow the graph G with
its natural metric d which measures the total weight of the
shortest path between any two nodes in G.

We study the discrete flow (i.e., discretization in time) prob-
lem of optimally transporting an initial mass distribution
w € Prob(V) to a target mass distribution v € Prob(V') us-
ing the graph G. The associated weight of each edge allows

us to define a cost matrix C' € R}, where [C];; = d(j, )
indicates the cost of transporting a unit mass from node
j to node i. Moreover, we endow the space Prob(V') of
probability measures on V' with the entropy-regularized
1-Wasserstein distance between two probability distribu-
tions p and v on G, defined as

W’Y(N’a V) = min <Cv 7T> + ’yH(W), (1)

mell(p,v)
where H(m) = Y mjj(lnm; — 1) = (m,In7 — 117T)
is the the negative entropy and v > 0 is the regulariza-
tion parameter. Here the minimizer (defined as the regu-
larized optimal transport plan) is computed over all cou-
plings on V' x V with marginals p and v, i.e., I(u,v) =
{m e R ’ Tl=yp, 7Tl =v}.

Our objective is to design a discrete flow {p;},>0 on G,
where p; € Prob(V'), by constructing a sequence of trans-
port plans {m; }+>0 such that po=p, prr1=m:1, pi=n] 1,
lim;_, » p¢=V and the transport cost at each iteration is min-
imized. Moreover, the desired sequence of transport plans is
required to satisfy the constraints imposed by the network,
namely that a node can only send mass to its neighbors
(in other words, the flow should follow the sparsity pattern
induced by the graph topology), the mass sent over an edge
cannot be greater than the associated edge capacity and the
mass at a node must not exceed its local storage capacity.

2.2. Wasserstein Attraction Flows on Graphs

We formulate the dynamic transport problem described in
Section 2.1 as a constrained Wasserstein attraction (WA)
problem (Peyré, 2015). Starting from an initial distribution
po = W, the approximate entropy-regularized WA flow is
defined as

~

w
pr1 = Prox_y,, . (pe)

= argmin {W,(p, pt) + W, (p,v)}, (2)
pEProb(V)

where 7 is a step size. Note W, (-, -) is a strictly convex and
coercive function, therefore the operator in (2) is uniquely
defined.

Next, we state one important observation about the entropy-
regularized WA flow in (2). Without loss of generality, one
can multiply the argument in the optimization problem (2)
by a constant w = 1/(1 4+ 7). Thus, we obtain

pr+1 = argmin {wWy(p, pr) + (1 —w)Wy(p,v)}, (3)
pEProb(V)

which is precisely the entropy-regularized WB between p;
and v (Cuturi & Doucet, 2014). Hence, we interpret the
WA as the sequential computation of Wasserstein barycen-
ters, which can be more intuitive and furthermore offers the
possibility to use theoretical results found in the literature
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for both the WA and WB problems. This introduces an
additional weight parameter that can be modified to give
preference to one measure or the other, which consequently
alters how the mass is transported across the graph. With
this, we state in Problem 1 our main contribution regarding
the design of the entropy-regularized discrete WA flow.

Problem 1 Ler A € {0, 1}”Xn be the adjacency matrix of
a discrete, finite, fixed and connected graph with n vertices,
C € R}*" the cost matrix, and pg, v € Prob(V') the initial
and final distributions respectively. Design a sequence of
probability measures {p, }1>0 by finding, for each t > 0,
the transport plan that solves the optimization problem

{m}= argmin wKL(m|§)+(1—w)KL(m2|§), (4a)
ﬂ'GCfﬁCc
7weC1NC2NCs
where
Cr= {7r1,7r2 e R} |7r11:pt,7rglzu} (4b)
C. = {7T1,7T2€Rixn \7T11=7721=p} (40)
¢ = {m,m e RP" |m < C} (4d)
CQZ{Wl,WQERixn|7T11Sp} (4e)
C3 = m,me € R™ | [m1]; < [pe]j ¢ (4D
J:(Ji)EE

3. Iterative Projections for the Computation
of Transport Plans

Dykstra’s projection algorithm can be used to solve prob-
lems of the form min,¢n,¢, KL(7|€), much like Problem 1
defined in Section 2. It is based on the computation of the
proximal operators for the KL divergence. This is done
iteratively, cycling through each constraint set C;, and since
C = N;C; is a finite intersection of L sets, we shall define,
for every index 4, C;; = C;. Then, for each k& > 0 we
compute
(kL) 7.‘.(lcfl)
(k)

ok — Prox!L (77(’@*1) .q<H>) g™ =g

with initial values 7(%) = ¢and ¢© = ¢V = ... =
¢~L*tY = 11T. The product and division of matrices
are considered element-wise. We slightly abuse notation
by omitting the step-size 7 in the definition of the proxi-
mal operator, since we are multiplying the argument in the
optimization problem (2) by w = 1/(1 4 7), as noted in
Section 2.

The next propositions state how we can compute in closed
form the proximal operators corresponding to each con-
straint in Problem 1.

)

Proposition 1 (Proposition 1 in (Benamou et al., 2015))
The proximal operator of the indicator function vc, has the
closed form

[ProxKL‘“ (11')]

ch

P
_ KL g l
= PrOXL{Wﬂ:PZ }(ﬂ'l)—dtag (71‘;1 ) m. (5)

Proposition 2 (Proposition 2 in (Benamou et al., 2015))
The proximal operator of the indicator function vc_ has the
closed form

KL, _ . p
{Proxwe (71')}[ = mdiag (1T7rz) ’

where p = [~ (17m;)"" (the products and exponentiation
are considered element-wise), and m = 2 in our case.

(6)

Proposition 3 (Section 5.2 in (Benamou et al., 2015))
The proximal map for the function ic, is defined as

[Proxf(L“’(ﬂ')] =Proxtt
€1 1 {m<C}

(m)=min (m, C~’) , (D

with the minimum computed element-wise.

Proposition 4 (Proposition 5 in (Benamou et al., 2015))
For the the indicator function (¢, one has
KL

L{wflgp}(m)

. . 14
= mdiag <m1n (, 1)) ,
1

with minimum and division of vectors done element-wise.

{PI‘OXKL“’ (W)]l = Prox

LC2

®)

Nodes in SUPP(p;) can send mass to non-neighboring nodes.
To fix this issue, we adapt constraint (4d). We redefine the
capacity matrix C for the transport plan 7, from p; to p41,
such that for the nodes in the support of py, if there is no
connection between one of them and another node, the “link”
between them has zero capacity, i.e.,

~ 0
[Cli = {[C’]”

Algorithm 1 summarizes the proposed method. It is impor-
tant to remark that our entropy-regularized approach does
not allow the scheme to converge exactly to the target dis-
tribution v, since the additional entropy term forces every
node to send a small amount of mass to the rest. Moreover,
we cannot guarantee the convergence of Algorithm 1 for a
fixed weight w, and to our knowledge, there is no proof for it
as of yet. However, if instead of taking fixed values for both
~ and w we consider, at each step ¢, (), w(t) such that
(), w(t) — 0 as t — +oo0, we can ensure its convergence
(Benamou et al., 2015; Peyré, 2015). Despite that, in the

if j € SUPP(p;) and A;; = 0,
otherwise.

9
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Algorithm 1 Conceptual procedure of the approach
Input: Initial and final distribution vectors py and v,
adjacency matrix A, cost matrix C, storage capacity
vector p, regularization parameter (¢) and weight w(t)
such that y(t),w(t) — 0 as t—-+o00, accuracy parameter
€
t=0
while 1 || — p;||, > do
Define the capacity matrix C' as seen in (9)
Compute the WB p;;1 with weights wy = w(t) and
ws = 1 — w(t) and the additional support and capac-
ity constraints by using Dykstra’s projection algorithm

with initial conditions 7r§0) = 7r§0) = 67% and the
proximal operators defined on (5), (6) and (8) for both
transport plans, and (7) only for transport plan 7; to
enforce the capacity constraint (4d) with capacity ma-
trix C'
t<—1t+1

end while

Output: {p;},

simulations carried out, we considered the weight w to be
both fixed and tending to zero and we observed how, for a
constant w < 1/2, the mass reaches the target distribution
as well. Regarding the convergence of the computation of
each intermediate distribution in the discrete flow, we state
the following lemma.

Lemma 1 For each step t, let C be the capacity matrix
defined in (9) such that it verifies C’T1>pt, and let p be the
retention capacity vector in the constraint set Co such that
pt<p (both inequalities are considered element-wise). Then,
the iterative computation of the proximal steps defined in
Propositions 1, 2, 3 and 4 converges to the solution of (4a).

Finally, Figure 1 shows a simple case study of a small net-
work to illustrate the effectiveness of the proposed approach.

4. Conclusions and Future Work

In this paper, we have presented a mathematical formula-
tion to resolve discrete optimal flows over networks, based
on the computation of constrained Wasserstein Barycen-
ters. Using the entropically regularized approximation of
the Wasserstein metric allows us to make use of Dykstra’s
projection algorithm, which in itself is easy to implement
and is competitive in terms of performance speed since it
only requires elementary operations such as matrix and vec-
tor products. Moreover, with this methodology, the solution
obtained is unique. The scheme presented can be extended
to consider more than two distributions (by the definition of
the Wasserstein barycenter) and is able to adapt to different

= =

Iteration 1, w = 0.75

= ==

Iteration 2, w = 0.1

= =

Iteration 4, w = 0.1

Initial distribution

Iteration 3, w = 0.1

Final distribution

Figure 1. Steps obtained with Algorithm 1 on a small network. In
the first step, w = 0.75 is used in favor of the initial distribution
so that the transportation is done more gradually. In the following
steps, the weight is reduced to w = 0.1, so that the target is covered
much faster.

changes, thus, a new line of investigation could be to use
the proposed approach to tackle problems involving decen-
tralized or distributed models, where not all the information
is available for every agent.
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