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Abstract

We study the problem of minimizing a convex
function over probability measures supported in
a graph. We build upon the recent formulation of
optimal transport over discrete domains to pro-
pose a method that generates a sequence that
provably converges to a minimum of the objec-
tive function and smoothly transports mass over
the edges of the graph. Moreover, we iden-
tify novel relation between Riemannian gradi-
ent flows and perturbed best response protocols
that provide sufficient conditions for the con-
vergence of the proposed algorithm. Numerical
results show practical advantages over existing
approaches with respect to the implementability
and convergence rates.

1. Introduction
Optimal transport theory provides a mathematical formu-
lation to describe how a probability distribution could be
efficiently transported into another (Villani, 2008). This
theoretical framework gives us geometrical tools to define
distances over probability spaces, extending concepts from
classical Euclidean geometries (Peyré et al., 2019). Such
flexibility, alongside the geometric and statistical proper-
ties of probability distributions has led to a large number of
applications, e.g., image morphing and image interpolation
of natural images (Simon & Aberdam, 2020), averaging at-
mospheric gas concentration data (Barré et al., 2020), fair-
ness in machine learning (Chzhen et al., 2020), Bayesian
learning (Backhoff-Veraguas et al., 2018), among others.

One of the most remarkable properties of optimal trans-
port is that it endows the spaces of distributions with a
metric known as Wasserstein metrics (Peyré et al., 2019).
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This induced geometry allows to apply concepts that ap-
plies to metric spaces to probability distributions M(X ).
In particular, one well-studied applications is that gradient
flows in Wasserstein metric, i.e., ∂tρ = − gradH(ρ) for
H(ρ) : M(X ) → R, can be used to model partial dif-
ferential equations (PDEs) (Otto, 2001). This significantly
facilitates the study of PDEs by analyzing the behavior of
the corresponding energy functions.

Although the optimal transport theory results are com-
pelling, with generalizations also to infinite-dimensional
spaces (Ambrosio et al., 2008), there is an increasing in-
terest in discrete time optimal transport algorithms over
discrete measures spaces and domains (Erbar et al., 2020;
Lavenant et al., 2018). Modern data-driven machine learn-
ing problems have intrinsic communication constraints and
structured domains, then the notions of discrete measures
on graphs naturally emerge (Bécigneul et al., 2020; Dong
& Sawin, 2020; Essid & Solomon, 2018). In spite of its
flexibility, optimal transport formulations require signifi-
cant computational efforts (Cuturi, 2013), particularly in
discrete structure domains like graphs (Erbar et al., 2020;
Lavenant et al., 2018).

In this paper, we focus on the optimization problem:

min
ρ∈∆+

F(ρ), (1)

where ∆+ denotes the interior of a probability simplex de-
fined on the nodes V = [1, . . . , n] of a graph G(V, E), and
F : ∆+ → R is a convex function. Moreover, we study the
case where we endow the domain ∆+ with a structured dis-
crete Wasserstein metric on the graph G(V, E). We assume
a minimizer exists and denote it as ρ∗.

When focusing on discrete distributions over graphs, the
advantage of optimal transport formulation does not rely
on the analysis of higher dimensional PDEs. Instead, the
induced metric contains information about the probability
mass exchange between nodes. Therefore, the gradient of
F(ρ) flows in the Wasserstein metric and generates curves
that not only minimize F(ρ), but smoothly transports the
mass over the edges of the graph.

Among the wide variety of algorithms for optimization
over probability measures of the form (1), the most broadly
discussed are those derived from Jordan-Kinderlehrer-Otto
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(JKO) schemes (Jordan et al., 1998). The idea behind
them is to minimize F(ρ) and impose the smoothness of
the solution via regularization with Wasserstein distance
W(·, ·) (Peyré, 2015). While such algorithms have success-
fully optimize functions over a broad range of networks,
there is immense computational cost.

Therefore, there is a need to propose simpler algorithms
to implement. Furthermore, since current applications de-
mand higher network complexity, making the optimization
algorithm work in a distributed manner is desirable. We
take advantage of the structure of gradF(ρ) to develop an
algorithm that generate a sequence {ρk}k that minimizes
F(ρ) for the interaction constraints imposed by a graph.
Using game theory concepts, we relate gradient flows with
a special class of better response dynamics, giving us new
tools to define minimizing discrete dynamics.

The main contribution of this paper can be summarized as
follows. First, we formally establish an equivalence be-
tween Wasserstein gradient flows over discrete measures
and population game dynamics. Second, we propose a dis-
crete algorithm for Wasserstein gradient flows to minimize
functions on the space of discrete functions supported on a
graph. Third, we determine sufficient conditions for con-
vergence of our proposed algorithm. Finally, we present
numerical experiments that support our theoretical results
and compare them with other proposed strategies.

2. Optimal Transport & Wasserstein Distance
in Graphs

Optimal transport framework describes optimal transfor-
mations between arbitrary measures. Given two measures
µ ∈ M(X) and σ ∈ M(Y ), and a transport cost c :
X × Y → R the optimal transport formulation searches
the optimal coupling between µ and σ with respect to c. In
the specific case when X = Y and the transport cost is ex-
pressed as c(x, y) = dX (x, y)p, with dX a distance in X ,
the optimal transport problem is equivalent to a minimal-
length path problem (Benamou & Brenier, 2000). This pro-
vides an extension to metrics over measures spaces called
p−Wasserstein distances. In (Chow et al., 2017), the au-
thors tackle this geometrical extension for distributions that
are supported by a weighted graphs proposing that the op-
timal transport formulation over graphs can be written as,

inf
Φ(t)

∫ 1

0

Φ(t)>L(ρ(t))Φ(t)dt (2)

s.t ∂tρ(t) = L(ρ(t))Φ(t), ρ(0) = µ and ρ(1) = σ,

where Φ(t) is a vector valued function and L(ρ(t)) is a
mass dependent Laplacian matrix. Thus, if we define an
inner product over the tangent space of ∆+, Tρ∆+ as
gρ(µ, σ) = µ>L(ρ)+σ where A+ is the pseudo-inverse

of A, the formulation in Equation (2) can be restated as
the definition of distance for the Riemannian manifold
(M(G), gρ). Therefore, we have access to the optimal
transport induced geometry on ∆+ via gρ(·, ·). With the
metric tensor we are able to define the gradient of a func-
tion F(ρ) under this geometry.

Proposition 1. The gradient of a functionF(ρ) : ∆+ → R
is gradF (ρ) = L(ρ)∇F(ρ).

The gradient described in Proposition 1 not only grants us
the instant steepest direction for a function F(ρ). It also
contains information about the graph topology. Thus, this
gradient will help define algorithms to optimize functions
F(ρ) over probability distributions.

3. Discrete Wasserstein Gradient Flows and
Population Dynamics

Once defined the notion of gradient under the geometry
induced by the Wasserstein distance, we can design algo-
rithms to generate sequences {ρ(k)}k that optimize func-
tions over probability distributions. One common approach
is to make a generalization of steepest descend algorithms
(Udriste, 2013), where a sampled version of the descend
direction − gradF(ρ(k)) ∈ Tρ(k)∆+ moves towards ρ∗

using a fixed step ε. Nevertheless, the convergence of
this family of algorithms, e.g. Riemannian Gradient De-
scent (Bonnabel, 2013), entirely depends on the choice of
ε. Consequently, we want to develop a more accessible way
to define a proper value for ε.

In (Mertikopoulos & Sandholm, 2018) the authors general-
ize population dynamics using the notion of gain of motion
G(z; ρ) and cost of motion C(z; ρ). If we want to choose a
direction z ∈ Tρ∆+ they propose to find it by maximizing
the profit of moving in such direction. An interesting char-
acteristic the resulting dynamics is that they are closely re-
lated to the Hopkins dynamics (Hopkins, 1999). Using this
relationship and properties of graph Laplacians it is possi-
ble to formulate gradient flows as a population playing a
potential game under the Riemannian dynamics.

Lemma 1. The Riemannian gradient flow ρ̇ =
L(ρ)∇F(ρ) is equivalent to the Riemannian dynamics with
G(z; ρ) = z>∇F(ρ) and C(z; ρ) = z>g(ρ)z, where
g−1(ρ) = L(ρ) + 1

n11
>.

With this in mind, let us define the direction z(k) =
α − ρ(k). This means that instead of choosing a direction
z ∈ Tρ(k)∆+ we choose a distribution α ∈ ∆+ to move
towards. Thus, we can formulate the iterative protocol,

ρ(k+1) = arg maxα∈∆+

{
α>∇F

(
ρ(k)

)
− 1

γ

(
α− ρ(k)

)>
g
(
ρ(k)

)(
α− ρ(k)

)}
.

(3)
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Equation (3) describes a family of target protocols called
Perturbed Best Response protocols (Hopkins, 1999). In
them, the players of a game choose the mixed strategy
α ∈ ∆+ that maximizes their profit when a noisy payoff
is perceived. Thus, we can relate our optimization problem
with them to grant us several tools to analyze our discrete
protocol for Wasserstein gradient flows shown in (3).
Theorem 1. Problem (3) has a closed form solution:

ρ(k+1) = ρ(k) +
γ

2
L(ρ(k))∇F(ρ(k)), (4)

and describes a perturbed best response protocol.

Theorem 1 gives us an insight of the behavior of the se-
quence {ρ(k)}k generated by Equation (3). Since perturbed
best response dynamics are an approximation of best re-
sponse dynamics (Sandholm, 2015), the sequence will pur-
sue the Nash equilibrium of a noisy version of the game
proposed in Lemma 1. Given that the fitness is generated
by the gradient of the functionF(ρ), such game describes a
potential game (Monderer & Shapley, 1996). A property of
these games is that their Nash equilibrium matches the op-
timizer of the potential function. To ensure convergence of
our proposed dynamics, note that perturbed best response is
a particular case of a sub-gradient algorithm with nonlinear
projection (Beck & Teboulle, 2003). We adapt a particular
result of them in Proposition 2 that gives us a criterion for
γ to generate a convergent sequence {ρ(k)}k.
Proposition 2. Let F(ρ) : ∆+ → R a convex Lipschitz
continuous function with respect to a fixed given norm ||·||.
If limk→∞ γ(k) = 0 and

∑
k γ

(k) =∞, then, the sequence
of points {ρ(k)}k generated by (4) converge to ρ∗.

Using the results of Theorem 1 and Proposition 2, we de-
sign an algorithm to choose a proper sequence of γ(k) such
as ρ(k) → ρ∗. This protocol is summarized in Algorithm 1.

Algorithm 1 Discrete Wasserstein Gradient Flow

Read ρ(0), η ∈ (0, 1)
d← gradF(ρ(0)), γ(0) ← η/mini di
for k ∈ {1, . . . ,K} do
d← gradF(ρ(k−1))
for i ∈ V do
γi ← min

{
ηρ

(k−1)
i /di, γ

(k−1)k/(k + 1)
}

if γi < 0 then γi ← γ(k−1)k/(k + 1) end
end for
ρ(k) ← ρ(k−1) − (mini γi)d

end for

4. Numerical Analysis
In this section, we present numerical simulations of our the-
oretical results. Therefore, we implement Algorithm 1 to-

gether with the Riemannian Gradient Descent (Bonnabel,
2013) and JKO flows (Peyré, 2015) to verify their per-
formance. In these simulations we minimize the Kull-
back–Leibler divergence, that isF(ρ) =

∑
i ρi log (ρi/qi),

with q ∈ ∆+. For all algorithms we set ρ(0)
i = 1/n for all

i ∈ V . Other additional parameters used in our simula-
tions are ε = 0.01 for Riemannian Gradient Descent and
η = 0.95 and

θij =


ρi if ∂ρiF(ρ) < ∂ρjF(ρ),

ρj if ∂ρiF(ρ) > ∂ρjF(ρ),
ρi+ρj

2 if ∂ρiF(ρ) = ∂ρjF(ρ),

for Algorithm 1. For the Entropic Wasserstein Gradient
Flows the parameters used are τ = 20, γ̄ = 2 and ε =
10−10. Additionally, since this algorithm needs the explicit
definition of a distance over V , we use the usual geodesic
distance over graph.
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Figure 1. Different implementations of Wasserstein gradient
flows. (a) Interaction graph that supports the distribution. (b)
Evolution of probability distribution using Riemannian Gradient
Descent (Bonnabel, 2013). (c) Evolution of probability distribu-
tion using Algorithm 1. (d) Evolution of probability distribution
using the implementation of JKO Flow presented in (Peyré, 2015).
In Figure (a) the thickness of the edges is proportional its weight.
In Figures (b)-(d) the filled markers at the end represents ρ∗.

We execute the algorithms in the graph shown in Fig. 1a. In
Figures 1b-1d we present the evolution of the distributions
through iteration for all three algorithms. It can be noticed
in Fig. 1b that, at the expense of being a fully distributed
algorithm, the Riemannian gradient descent is a slower al-
gorithm. Instead, the evolution of Algorithm 1 is faster as
shown in Fig. 1c but preserving the distributed property.
Even it is comparable to the performance of a centralized
algorithm as presented in Figure 1d.
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5. Conclusions and Future Work
In this paper, we propose an alternative algorithm to cal-
culate gradient flows under the Wasserstein-like metrics.
By relating concepts from optimal transport and population
game theory we not only present a new algorithm to mini-
mize functions whose domain are probability distributions.
In addition, we provide sufficient conditions to guarantee
the convergence of the aforementioned algorithm. More-
over, we illustrate our theoretical results in an assortment
of simulations. With them we can evidence that its per-
formance is comparable to other presented strategies that
tackle the same issue but with a lower computational cost.
Future work should study accelerated gradient flows, ca-
pacity constraints in the network nodes and edges, and non-
asymptotic convergence analysis.
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