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Abstract

Although Machine Learning algorithms are solv-
ing tasks of ever-increasing complexity, gather-
ing data and building training sets remains an
error prone, costly, and difficult problem. How-
ever, reusing knowledge from related previously-
solved tasks enables reducing the amount of data
required to learn a new task. We here propose a
method for learning a mapping model that maps
data from a source task with labeled data to a re-
lated target task with only unlabeled data. We
perform an empirical evaluation showing that our
method achieves performance comparable to a
model learned directly in the target task.

1. Introduction and Motivation

Machine Learning (ML) applications are progressively be-
coming pervasive. Due to recent advances in learning and
optimization algorithms, dedicated hardware platforms, and
open-source implementation frameworks, ML is being em-
ployed in challenging domains of ever-increasing complex-
ity nourished by a growing amount of available data, con-
tinuously being collected and stored in the internet age.
Learning algorithms are designed to train models P(Y|X)
that predict a class or a real number Y based on relevant
input features X. Most algorithms assume that the data
used for training the ML model (training set) is made up
of independent samples from the same joint distribution
P(Y, X), with p(Y, X) = p(Y|X)p(X). Although ML is
becoming increasingly accessible and most companies are
able to train and deploy models for several tasks, learning
algorithms remain data-hungry. Since crafting new training
data is still costly and a time-consuming process additional
techniques for reducing the sample-complexity are needed.

Transfer Learning (Pan & Yang, 2010) enables sharing
knowledge for reducing sample complexity of learning a
task. While transfer can be achieved in various ways, e.g.
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through communication in multi-agent systems (Dawson
et al., 2021), we are here not interested in parallel learning
or sample sharing but focus on reusing previously learned
knowledge in a sequential way. However, reusing knowl-
edge from one (or more) task(s) for learning a new one is
challenging (Glatt et al., 2016) because we can generally
expect that the distribution P (Y| X') will change from one
(source) task to another (target) task, a phenomenon known
as Concept Drift (Webb et al., 2016), making it hard to
directly reuse samples or models (Glatt et al., 2020). Ad-
ditionally, bias in the sampling process might cause the
distribution P(X) to shift between training and deployment
phase, known as Covariate Drift. Therefore, both P(Y|X)
and P(X) are expected to change from one task to another.

Despite the above-mentioned challenges, reusing knowledge
is useful in many practical situations. Consider a company
that calculates a creditworthiness score for deciding if a
loan should be given to a particular customer. This score is
estimated by a model that receives, as input, the customer’s
previous credit-related relationship with this particular com-
pany and its partners, and outputs an estimated probability
that the customer defaults the loan. Now imagine that this
company expands its operations to a new country. The
model cannot be directly reused because the new population
has its own particularities (drift in P(Y'|X)). Moreover,
the “average person” in this new country might be different
from the previous one (drift in P(X)). However, building
a new data set in this new country will demand time and
investment, because the company will have to start new re-
lationships and wait to see who defaults loans and who does
not. For many months, the company will have access to
customer profiles but will not have the information of who
will be able to pay their loans, which corresponds to having
unlabeled data in the target task. Therefore, being able to
reuse some knowledge from the source task to accelerate
this process could be very beneficial to the company.

2. Background

In this section we explain the underlying theories that form
the base for our proposed method. First, we define the Su-
pervised Learning problem and then we describe the GAN
framework which we use for our mapping approach. Fi-
nally, we present the definition of transfer learning and how
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it relates to the challenge we introduce here.

2.1. Supervised Learning

A particular learning task consist of building a predictive
model h: X — Y, where X = X', ..., X/ V,exz €R
corresponds to a set of features sufficient for fully describing
the task and Y is the rarget variable to be predicted. Super-
vised learning covers mainly two areas and we can define
Y € R for regression tasks and Y € C for classification
tasks, where C' is the set of possible labels. A Concept is
defined as the joint distribution P(Y, X') (Gama et al., 2014)
and can be decomposed as P(Y, X) = P(Y|X)P(X).

We are primarily interested in modelling P(Y|X) to pre-
dict Y for new samples. However, since P(Y, X), P(Y|X)
and P(X) are all initially unknown, we train learning al-
gorithms by gathering a dataset of samples with known
answers O = o',...,0", o' =< z',y° >. The learning
algorithm then has to learn how to generalize a function
to predict Y for new samples based on O. Many learning
algorithm have been proposed for learning in this scenario,
including Linear Discrimination (Lei et al., 2012), Support-
Vector Machines (Cortes & Vapnik, 1995), Naive Bayes
(John & Langley, 1995), Multilayer Perceptron Networks
(Basheer & Hajmeer, 2000), and others.

2.2. GAN and Cycle-Gan

A Generative Adversarial Network (GAN) is a popular
framework to learn generative models capable of generating
realistic samples (Goodfellow et al., 2014).

A basic GAN is illustrated in Fig 1 with two models as main
components, a generator (red) and a discriminator (blue).
The objective of the generator is to generate realistic sam-
ples while the discriminator learns to distinguish between
real samples and artificial ones produced by the generator.
As both models co-evolve in an adversarial manner, they
eventually stabilize in an equilibrium where the discrimina-
tor cannot distinguish between generated and real samples
because they are indistinguishable from each other.
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Figure 1. Illustration of a basic GAN model.

The loss function for the discriminator is defined as
1 1
‘CD = _i]Eaclo.gD(m) - §Ezl0.g(1 _D(G(Z)))v (1)

where D(x) is the discriminator model, G(z) is the gen-
erator model, and z is a random vector. That is, the loss
function represents how many of the samples were correctly
classified as fake or real. The generator is simply trained
with the inverse of this loss,

Lp=—La, 2

which means that the generator will optimize its loss by
deceiving the discriminator.

2.3. Transfer Learning

Gathering data and building data sets is a costly and time-
consuming process. However, reusing knowledge from a
previously solved and related task might reduce the data
requirements of learning algorithms. Formally, we define
adomain D = (X,Y) as a feature space X and an output
space Y. A rask T = (P(X), f(.)) consists of a marginal
probability distribution P(X) and an objective predictive
function f(.), which is not observable but is the ground
truth function that generates the correct output for any sam-
ple. Tasks belonging to a single domain are expected to
be similar, but not equal. The most common way of per-
forming transfer is by reusing knowledge from a source task
7% in a target task 7°. In case P*(X) # P!(X), we say
that a Covariate Drift happened from one task to another.
In case f5(.) # f!(.), we say that a Concept Drift hap-
pened. Knowledge can be reused in several ways, such as
reusing O° as additional samples for learning 7 (instance-
transfer). We focus here on reusing and refining ~°(.) in the
target task (model-transfer). Performing transfer is useful
but generally hard because of covariate and concept drift.

3. Problem Statement

This work assumes it is possible to define a mapping func-
tion that “translates” a sample from the target task to the
source task, that is, if f : X* — X* is a mapping function,

A P(FX)PY]f(X)) = P(X*)P(Y]X?).  (3)

The main challenge that we are aiming to overcome is to
learn f based on available but insufficient data from a target
domain for which we have a good model in a related source
domain. Specifically, here, we are interested in the credit
risk problem. For example, a potential application would be
to define the credit score for people in regions where there
is little or no data available but we still need to estimate how
likely a person is to default their payments.

Figure 2 illustrates an idea of how this could be established
in practice. In our example, a basic source model is initially
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Figure 2. Tllustration of a localized example: In a supervised manner, a source model for credit risk assessment is trained for the Brazilian
population, where there is abundant labeled data. The Laotian credit data is largely unlabeled and a mapping function f is learned to map
Laotians into “virtual Brazilians” using the GAN framework. f is then simply integrated between Laotian data and Brazilian source

model, making the model directly usable for Laotians.

trained from data collected in a country with lots of available
data. Then, instead of learning a whole new model for a
different country to calculate the credit score, we only learn
a mapping function that allows to map an average person
from the new country to their counterpart in the original
country. The effectiveness of the original model trained
with massive amounts of data can then be leveraged to rate
people from new countries taking local differences into

account without the need for extensive data. Over time,

after enough data is gathered, a regular specialized model
can be trained for the new country.

4. Solution Description

We propose to learn the function f using a GAN framework
where the generator represents the mapping function that
“translates” between countries. However, its easy to see
that the regular GAN loss would not be appropriate for
this problem. The generator could simply map all Laotians
to a seemingly realistic Brazilian profile, with no relation
with their probability of defaulting, still getting optimal
cost. Instead, we are following the CycleGAN approach
introduced by (Zhu et al., 2017). In addition to the regular
generator loss (Eq. 5), it also includes a cost component

Leyae = ||F(G(@))]]; )

where F'() is a function that translates the sample back from
source to target task. This cost function enables the model to
translate the samples in a way that the relevant information
is preserved to recover the original sample.

However, inspecting this cost functions shows that it is
not enough to solve the learning task. Not only should
the model be able to translate the samples back and forth
across the tasks, it should also be able to perform the correct
classification. Therefore, we propose to train the GAN

model using a novel cost:
L= _ED + ‘CCycle + |h(G($)) - y| (5)

where h is the model trained in the source task and specific
purpose components —L p and Lcycr.. While the negative
discriminator loss —£Lp aims at deceiving the discrimina-
tor (thus generating realistic “virtual Brazilians”), Lcycie
makes sure the transformation is revertible, allowing a seam-
less restoration of the original data. Finally, the last compo-
nent, |h(G(x)) — y|, encourages the generator to produce
samples in a way that the source model is able to estimate
the correct credit rate for Laotian samples.

5. Experiment

In this paper we describe an initial experiment we performed
in the Circle domain. Our artificially-generated target task
consists of classifying samples as “inside” or “outside” a
circle of arbitrary radius r and origin (z,, ¥,), as illustrated
in Fig. 3. With r, z,, and ¥y, unknown, the classifier has to
learn to label a new sample (x,y) based on a training set. To
evaluate our mapping approach, we simulate both covariate
and concept drift. Covariate drift is simulated by sampling
points in the left side of the circle with a higher probability
for 7. Concept drift is simulated by changing the radius of
the circle across tasks.

We observed promising results showing the feasibility of
the approach in a simple domain (Table 1). The benchmark
result is represented by a model that we trained directly
in the target domain without using any transfer and which
achieved an average accuracy of 92.4%. Simply using the
source model directly on the target domain data fails dras-
tically and just showed similar performance as a random
coin flip averaging just below 50%. Our approach with a
learned mapping function was able to achieve very high per-
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Figure 3. Data sampled from the circle environment. (a): O° with covariate drift; (b): O® without any drift; (c): O* available to the
algorithm (covariate and concept drift); (d): data for evaluating accuracy.

formance with an average of 83.3%, rivaling the benchmark
model despite a source model developed in another task.

Using source model directly 49.3%
Training target model directly 92.4%
Mapped through modified GAN | 83.3%

Table 1. Results for Circle domain using modified GAN model.

6. Conclusion and Further Work

While Machine Learning techniques have been successful
in providing predictive abilities for many domains, build-
ing data sets remains a costly and difficult task. For this
reason, being able to reuse data across different tasks is use-
ful. We propose a novel mapping method based on GANs
that enables reusing models in similar yet different tasks.
Our preliminary experiment in the circle domains shows
promising results. Even when fed only data without labels,
the mapping approach achieved performance similar to the
model trained with labeled data. Further work will evalu-
ate our method in the creditworthiness estimation domain,
which motivated our approach in the first place.
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