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Abstract

Although Machine Learning algorithms are solv-
ing tasks of ever-increasing complexity, gather-
ing data and building training sets remains an
error prone, costly, and difficult problem. How-
ever, reusing knowledge from related previously-
solved tasks enables reducing the amount of data
required to learn a new task. We here propose a
method for reusing a tree-based model learned in
a source task with abundant data in a target task
with scarce data. We perform an empirical evalua-
tion showing that our method is useful, especially
in scenarios where the labels are unavailable in
the target task.

1. Introduction and Motivation
Machine Learning (ML) applications are progressively be-
coming pervasive. Due to recent advances in learning and
optimization algorithms, dedicated hardware platforms, and
open-sourced implementation frameworks - allied with a
huge amount of data being collected and stored in this in-
ternet era - ML is being employed in challenging domains
of ever-increasing complexity. Learning algorithms try to
estimate models that predict P (Y |X), where Y refers to
the variable to be predicted (a class label in classification
problems or a real number for regression), and X refers
to the set of relevant features for the prediction problem.
Most algorithms assume that the data used for training
the ML model (training set) is built by sampling inde-
pendently from the same joint distribution P (Y,X), with
p(Y,X) = p(Y |X)p(X). Although ML is becoming in-
creasingly accessible and most companies are able to build
datasets, train, and deploy models for several tasks, learning
algorithms are generally data-hungry. Since crafting new
training data is still a costly and time-demanding process,
additional techniques for reducing the sample-complexity
are needed.
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Transfer Learning (Silva & Costa, 2019) enables reusing
knowledge for reducing sample complexity of learning a
new task. However, reusing knowledge from one (or more)
task(s) for learning a new one is challenging. The main
reason for that is that we can generally expect that the dis-
tribution P (Y |X) will change from one (source) task to
another (target) task, - which we call here as Concept Drift
(Webb et al., 2016) - making it hard to directly reuse samples
or models. Additionally, bias in the sampling process might
cause the distribution P (X) to shift from the training phase
to the deployment phase - which we call here as Covariate
Drift. Therefore, both P (Y |X) and P (X) might change
from one task to another.

Despite the above-mentioned challenges, reusing knowledge
is useful in many practical situations. We here deal with
reusing models across different tasks. Our approach trains
a tree model in a task and refines it to another, achieving
better performance without fully retraining for the new task.

2. Background
A particular learning task consist of trying to build a predic-
tive model h : X → Y , whereX = X1, . . . , Xf ,∀x∈Xx ∈
R corresponds to a set of features hopefully sufficient
for fully describing the task, and Y is the target vari-
able to be predicted. Y ∈ R in regression tasks and
Y ∈ C in classification tasks, where C is a set of pos-
sible labels. A concept is defined as the joint distribu-
tion: Concept = P (Y,X) (Gama et al., 2014), which
can be decomposed as P (Y,X) = P (Y |X)P (X). We
are primarily interested in modelling P (Y |X) to predict
Y for new samples. However, since P (Y,X), P (Y |X)
and P (X) are all initially unknown, we train learning al-
gorithms by gathering a dataset of samples with known
answers O = o1, . . . , on, oi =< xi, yi >. The learning
algorithm then has to learn how to generalize a function
to predict Y for new samples based on O. Many learning
algorithm have been proposed for learning in this scenario.
In this paper we focus on learning algorithm derived from
Decision Trees, such as Tree Gradient Boosting and Random
Forests.

Decision Trees are binary tree-like models, where each node
corresponds to a test specifying the path a particular sam-
ple has to follow in the tree. The tree leaves specify the
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Figure 1. Illustration of the transfer scenarios explored in this paper.
The model refining scenario (left) and the model adapting scenario
(right) mainly differ by the availability of samples in the target
task.

final output of the algorithm. Usually, each node contains a
single test, e.g., verifying if the value of a feature is higher
than a threshold. The learning process consists of defining
the tree topology and tests (i.e., which feature to test and
the corresponding test threshold) for all nodes. Decision
Trees are easy to visualize and interpret, making it a popu-
lar model. The Tree Gradient Boosting (Chen & Guestrin,
2016) algorithm trains a model in an additive manner and
has been shown to be very efficient in real-world tasks.
Although those algorithms were able to solve many real-
world problems, they require ample access to training data,
which might be unrealistic for several tasks. One way of
improving data-efficiency is by performing Transfer Learn-
ing. Formally, we define a domain D = 〈X,Y 〉 as a feature
space X and an output space Y . A task T = 〈P (X), f(.)〉
consists of a marginal probability distribution P (X) and
an objective predictive function f(.), which is not observ-
able but is the ”ground truth” function that generates the
correct output for any sample. Tasks belonging to a single
domain are expected to be similar, but not equal. The most
common way of performing transfer is by reusing knowl-
edge from a source task T s to a target task T t. In case
P s(X) 6= P t(X), we say that a Covariate Drift happened
from one task to another. In case fs(.) 6= f t(.), we say
that a Concept Drift happened. Knowledge can be reused in
several ways, such as reusing Os as additional samples for
learning T t (instance-transfer). We focus here on reusing
and refining hs(.) in the target task (model-transfer). Per-
forming transfer is useful but generally hard because of
covariate and concept drift.

3. Problem Statement
We consider two different transfer scenarios illustrated in
Figure 1. For both scenarios, we are interested in gathering
knowledge from a source task T s and reusing it in a target
task T t. They both belong to a same domain1 D, T s ∈ D
and T t ∈ D. For both scenarios, we are only concerned
with the model performance in T t, and the source task is
considered only as a mean to improve performance in T t.

1We are not interested in transfer scenarios where the feature
and/or output space differ across tasks.

In the Model Refining scenario, a labeled training set is
available for each of the tasks (Os and Ot). If the transfer
procedure is efficient, l(T t, h(Os ∪Ot)) < l(T t, h(Ot)),
i.e., the loss (inverse of performance) in the target task is
lower when leveraging data from T s than when using only
the data available from T t. Usually, this scenario makes
sense when data from the source task is more abundant than
in the target task: |Os| > |Ot|.

In the Model Adapting scenario, a labeled training set is
only available for T s. For the target task only unlabeled
samples are available: ∀o ∈ Ot : o = 〈x, ∅〉, which means
that a model cannot be directly trained with data from the
target task. However, since Os has labels, this scenario tries
to reuse knowledge from the source task while accounting
for possible drifts across tasks.

For an example of where those scenarios would be appli-
cable in practice, consider a credit score company. If the
company is planning on moving to another country, the la-
bels (which clients defaulted their loans) will be unavailable
for a long period of time. However, customer profiles (fea-
tures) will be available almost immediately, corresponding
to a Model Adapting transfer scenario, because the company
has abundant data on its country of origin. After some time
the company will have some labels in the new country, but
not enough to train a high-performance model. Then, this
corresponds to a Model Refining scenario. Therefore, algo-
rithms that deal with either (or both) of the scenarios have
practical use in many real-world situations.

4. A Tree-Adaptation Mechanism for
Covariate and Concept Drift

We propose a transfer mechanism that can be used for both
scenarios described in Section 3. Our method is specialized
to tree-based learning algorithms, and fully described in the
Algorithm in the supplementary material. Each node v on
the decision tree splits the training set O in two subsets Ol

and Or according to their value of a single particular feature.
Each split induces a new distribution of labels in each sub-
set, hopefully resulting in leaves with minimal entropy. The
transfer mechanism consists of reusing the tree topology
from one task to another. However, notice that a drift in
P (X) or P (Y |X) will affect the resulting split after each
node, reducing the accuracy of the tree model because subse-
quent nodes will receive data of an unexpected distribution.
Therefore, our procedure recalculates all thresholds in the
tree, trying to reconstruct the same distributions observed
in the source task. For the Model Refining scenario we re-
construct the label distributions after each split, while in the
Model Adapting scenario we reconstruct the distributions
P (xv). Since our high-level motivation is very similar to the
STRUTS transfer algorithm (Segev et al., 2017), we opted
to keep the STRUTS nomination for this algorithm, recog-
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nizing that Segev’s and our methods belong to a common
family of algorithms. However, notice that the calculations
to be described next are different from Segev’s paper.

We always start by fitting a decision tree to the source task
by using its training set Os. Starting from the root node, the
algorithm defines the sample subsets Os

l and Os
r that were

assigned to the left and right child nodes in the source task.
Then, a set of new threshold candidates T is generated. Each
threshold τ c ∈ T is then evaluated according to a threshold
measure, and the best threshold τ t is defined. The node
v is then updated by setting the new threshold τ t and the
induced splits Ot

l and Ot
r are defined and used the update

the left and right subtrees.

For defining the threshold candidates and quality, let δ(O)
be a distribution of values assumed by samples in O (we
specify how to calculate this distribution for each scenario
in the next subsections). The quality of each threshold
τ c is estimated by the divergence gain observed by us-
ing τ c. The motivation behind the divergence gain is to
select the threshold that induces in the target task a dis-
tribution as similar as possible as the one originally ob-
served in the source task for a particular node: t q =

1− |Ot
l |

|Ot
v|
JS(δ(Os

l ), δ(O
t
l ))−

|Ot
r|

|Ot
v|
JS(δ(Os

r), δ(O
t
r)) where

JS is the Jensen-Shannon divergence (which is limited to
the range [0, 1]), |Ot

l | is the number of samples in the target
task assigned to the left subtree, and Ot

v = Ot
l ∪Ot

r.

For defining thresholds candidates, every node v in the tree
performs a test on feature xv dividing the source task data
in two. The first subset contains the first p-th percentile of
the data sorted by xv, p = percentile(Os, xv, τ), while
the second contains the remaining samples. Due to possible
drifts, the same threshold will correspond to a different per-
centile in the target task. Therefore, we generate the candi-
date thresholds around the threshold τ t that approximates
the percentile p in the target task: τ t = argminτc |p −
percentile(Ot, xv, τ

c)|, thres candidates = [τ t−ε, τ t+
ε],where ε is a parameter specifying how much the threshold
candidates are allowed to diverge from τ t.

The calculation δ is specific for each of the scenarios and is
described in the next subsections.

4.1. Model Refining Transfer

In the Model Refining scenario, the labels are available for
all samples. Therefore, we rely on the label distribution for
calculating δ:

δMR(O) = P (O.y) (1)

where we denote as P (O.y) the distribution of labels, dis-
cretized as the observed histogram with the number of labels
for each class. Integrating δMR into the method described in

the last section results in choosing the threshold that induces
similar proportions of classes in the subtrees across tasks.
We call our algorithm equipped with δMR as STRUTSMR.

4.2. Model Adapting Transfer

In the Model Adapting scenario, labels are unavailable for
the target task. Hence, calculating δMR(O

t) would be im-
possible. For this scenario we hence consider the distribu-
tion of values for the feature chosen for the split in that
node:

δMA(O) = P (O.xv) (2)

where P (O.xv) the distribution of values observed in the
feature xv for samples in O. We call our algorithm equipped
with δMA as STRUTSMA.

5. Experiments
In order to evaluate the effectiveness of our method, we
evaluate our algorithm two domains. The first one, namely
circle, is a toy domain where we can easily control covariate
and concept drift. The other domain, mushroom, is a real-
world problem where we expect our method could be useful.
In this domain, the algorithm tries to define if a mushroom
is edible or poisonous based on its morphological features.
In the next subsections we describe each domain and the
experimental results. In all domains, we evaluate the follow-
ing algorithms: (i): OnlySource: This algorithm trains a
model using exclusively Os, completely ignoring any kind
of drift that might have happened; (ii): OnlyTarget: This
algorithm trains a model using exclusively Ot when pos-
sible (i.e., in model refining scenarios), which means that
OnlyTarget corresponds to normal Machine Learning with-
out transfer; (iii): STRUTSMR and STRUTSMA: For
model refining scenarios, we use STRUTSMR (Section
4.1). For model adapting scenarios, we use STRUTSMA

(Section 4.2). We consider Gradient Boosting (GB) as the
base learning algorithm.

5.1. Circle Domain

Our artificially-generated target task consists of classifying
samples as ”inside” or ”outside” a circle of arbitrary radius
r and origin (xo, yo).With r, xo, and yo unknown, the clas-
sifier has to learn to label a new sample (x,y) based on a
training set. In the model refining scenario, we simulate
covariate drift by sampling points in the left side of the cir-
cle with a higher probability for T s, In the model adapting
scenario, the samples in T s are generated by a circle with
a different radius, and samples for T t have no label. The
results in Table 1 refer to the average accuracy observed in
200 repetitions of the experiment.

In the Model Refining scenario, OnlySource achieves the
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best performance. This indicates that the drift in P (X) rep-
resents a smaller obstacle to tree models than the scarceness
of data. The model trained from abundant but drifted data
(OnlySource) outperforms the models that make use of the
scarce data without drift (OnlyTarget and STRUTSMR).
However, for the Model Adapting scenario, samples in the
target task cannot be directly used because they have un-
known labels. For that reason, we evaluate only OnlySource
and STRUTSMA in this scenario. Differently from the
Model Refining scenario, the drift in P (Y |X) severely ham-
pered the model ability to directly reuse the data from the
source task. In this scenario, STRUTSMA is the top per-
former for both algorithms.

Finally, when drift in both P (X) and P (Y |X) are present
(our Model Refining and Model Adapting scenario), the
results are very similar from the Model Adapting scenario.
The overall accuracy of the algorithms is slightly decreased,
but STRUTSMA is still the top performer. In conclusion,
in the circle domain, whenever a concept drift happens it
is useful to perform model transfer using STRUTS. No
benefit was observed when only covariate drift happens.

circle mushroom
Model Refining

OnlySource (GB) 86.31 36.60
OnlyTarget (GB) 81.21 66.08
STRUTSMR (GB) 82.74 75.97

Model Adapting
OnlySource (GB) 57.55 36.60
STRUTSMA (GB) 60.20 58.80
Model Refining and Model Adapting
OnlySource (GB) 56.80 N/A
STRUTSMA (GB) 58.56 N/A

Table 1. Average accuracy observed in 200 repetitions of our ex-
periments in both domains.

5.2. Mushroom Domain

The Mushroom domain is a real-world inspired benchmark
that has been widely used for evaluating classification algo-
rithms. The dataset is freely available in the UCI repository2

and consists of 8124 instances described by 22 categorical
features. In this task, the algorithm has to classify whether
if a specific mushroom species is edible or poisonous by
evaluating its physical characteristics such as odor and stalk.

In order to simulate concept and covariate drift, we define
as source task classifying all samples with enlarging stalk
shape. The target task classifies the reaming samples, with
tapering stalk shape. This sample split is similar as the
one carried out for other works studying drifts (Segev et al.,
2017). Since we cannot control the distribution P (Y |X) in

2https://archive.ics.uci.edu/ml/datasets/Mushroom

this domain, we only consider the model refining scenario
where covariate drift is induced and the model adapting
scenario with unknown target labels, but drift only in P (X).
All results are shown in Table 1. The results from the model
refining scenario are different from our previous evaluation
domain. OnlySource has a low accuracy in this domain,
which shows that the model was not able to generalize rules
for the target task from the source. In the model adapting
scenario, STRUTSMA remains the top performer, improv-
ing in over 20% the accuracy of OnlySource.

6. Conclusion
We here proposed a model transfer method specialized to
tree-learning base algorithms to reuse knowledge from a
source task (usually with abundant data) to a target task
(usually with scarce data). We describe the covariate and
concept drift problems, and show variations of our proposed
methods specialized for each of them. We evaluate our
method in two domains, where one of them is a real-world
problem, and one is a toy problem where we can easily
control the drift. Our experiments show that the transfer
method is useful, especially when concept drift happens and
labels are not available in the samples from the target task.
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Detailed Algorithm
Our method is illustrated in a high level in Figure 2. Each
node v on the decision tree splits the training set O in two
subsets Ol and Or according to their value of a single par-
ticular feature. Each split induces a new distribution of
labels in each subset, hopefully resulting in leaves with min-
imal entropy. The transfer mechanism consists of reusing
the tree topology from one task to another. Our procedure
recalculates all thresholds in the tree, trying to reconstruct
the same distributions observed in the source task when the
task changes.

Figure 2. High-level illustration of our method. A tree model is
fitted on the training set from T s. Then, the tree topology is reused
for T t. However, since covariate and/or concept drift is expected
to happen, all node thresholds are recalculated based on Ot.

Algorithm 1 fully describes the procedure in the high-level.
The algorithm is initiated after a decision tree model is fitted
to the source task by using its training set Os. The first v is
the root node, and each node is composed of a feature xv
and a threshold τ for performing the test, and pointers to the
left and right child nodes (vl and vr) according to the tree
topology.

Starting from the root node, the algorithm defines the sam-
ple subsets Os

l and Os
r that were assigned to the left and

right child nodes in the source task. Then, a set of new
threshold candidates T is generated. Each threshold τ c ∈ T
is then evaluated according to a threshold measure, and the
best threshold τ t is defined. The node v is then updated
by setting the new threshold τ t and the induced splits Ot

l

and Ot
r are defined and used the update the left and right

subtrees.

For defining the threshold candidates and quality, let δ(O)
be a distribution of values assumed by samples in O (the
specific calculation for this is in Sections 4.2 and 4.1 ). The
quality of each threshold τ c is estimated by the divergence
gain observed by using τ c. The motivation behind the di-
vergence gain is to select the threshold that induces in the
target task a distribution as similar as possible as the one

Input: node v = 〈xv, vl, vr, τ〉, training sets Ot

and Os

if |Ot| > 0 then
Os
l ← Os.xv ≤ τ

Os
r ← Os.xv > τ

T←
thres candidates(τ, xv,O

s
l ,O

s
r ,O

s,Ot)
τ t ←
argmaxτc∈T t q(τ

c, xv,O
s
l ,O

s
r ,O

s,Ot)
v.τ ← τ t

Ot
l ← Ot.xv ≤ τ t

Ot
r ← Ot.xv > τ t

v.vl ← STRUTS(vl,O
s
l ,O

t
l )

v.vr ← STRUTS(vr,O
s
r ,O

t
r)

end
return v

Algorithm 1: STRUTS

originally observed in the source task for a particular node:

t q = 1− |O
t
l |

|Ot
v|
JS(δ(Os

l ), δ(O
t
l ))−

|Ot
r|

|Ot
v|
JS(δ(Os

r), δ(O
t
r))

(3)
where JS is the Jensen-Shannon divergence (which is lim-
ited to the range [0, 1]), |Ot

l | is the number of samples in the
target task assigned to the left subtree, and Ot

v = Ot
l ∪Ot

r.

The motivation behind our approach for defining threshold
candidates is illustrated in Figure 3. Every node v in the
tree performs a test on feature xv dividing the source task
data in two. The first subset contains the first p-th percentile
of the data sorted by xv , p = percentile(Os, xv, τ), while
the second contains the remaining samples. Due to possi-
ble drifts, the same threshold will correspond to a different
percentile in the target task. Therefore, we generate the can-
didate thresholds around the threshold τ t that approximates
the percentile p in the target task:

τ t = argmin
τc
|p− percentile(Ot, xv, τ

c)| (4)

thres candidates = [τ t − ε, τ t + ε], (5)

where ε is a parameter specifying how much the threshold
candidates are allowed to diverge from τ t.
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Figure 3. Illustration of the process for generating threshold candidates. Each node in the tree learned from Os has a threshold τ splitting
the data in a percentile p according to the value in feature xv (a). Due to drift, the same threshold potentially results in a different
percentile when splitting Ot (b - red line). We define the new threshold resulting in a split in percentile p (cyan line), and consider a range
of values near to that threshold (green lines).


