
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Beacon classifier

Anonymous Authors1

Abstract
In large networks, malware programs hide in plain
sight. Whereas signatures such as periodicity and
bunching exist, they are buried in what is often
billions of rows of data. We present two classi-
fiers: one is inspired by a Bayesian belief network
and determines the bias of an events’ payload, the
other compares the time elapsed between connec-
tions to what is expected from human or random
behavior using the Kullback-Leibler (KL) diver-
gence. We manually labelled the connections of a
dataset as ‘beacon’ or ‘no beacon’ and used them
to compute the receiver operating characteristic
(ROC) curve to tune and test the classifiers.

1. Research problem and motivation
Malware is any software used to disrupt computer opera-
tions, illegally collect information, inappropriately gain ac-
cess to private networks, or cause damage to computational
resources. A common behavior of malware is known as
“beaconing” which implies that infected hosts communicate
to Command and Control (C2) servers at regular intervals
(time lapse) with relatively small payload size variations.
Malware with beaconing behavior range in severity from
annoying, but relatively harmless, to potentially calamitous
in the hands of criminal groups or state-sponsored actors.
Additionally, there might be random gaps in the signal by
accident or by design, and parameters such as connection
frequency are completely at the discretion of the attacker.

2. Technical contribution
We developed two classifiers to arrange attributes of connec-
tions (number of bytes transferred, time elapsed between
connections, etc.) into ‘beacon’ or ‘not beacon’ with an
error rate set by the user. The first classifier integrates ev-
idence in a Bayesian way to determine if the values in a
collection are biased towards having the same value or sets

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

of values. The second one uses a measure of divergence
between two probability distributions to determine if the
values in a collection could have been generated by a known
or random process, or not. We define a set of repeating
events as consists of connections that share the same client
IP address, user agent (app), and internet host in a given time
range (so they are likely originating from the same computer
and repeatedly connecting or attempting to connect to the
same host).

2.1. Bayesian bias classifier

The bias classifier works best with payloads and is inspired
by a Bayesian belief network instance that has an analytic so-
lution: that in which each observation is identical and inde-
pendently distributed. An example is a series of coin tosses
in which the coin might be biased. p(θ) is the Bayesian
prior probability distribution that the coin is biased towards
‘heads’ (x = 1) or ‘tails’ (x = 0) and it can be shown that:

p(θ|X) ∝ p(θ)θNx=1(1− θ)Nx=0 (1)

where p(θ|X) is the Bayesian posterior probability given a
set of observations X . To illustrate this idea, we show in
Fig. 1 how the probability distribution is updated for a coin
that lands ‘heads’ 80 percent of the time. The blue prob-
ability distribution is the initial estimation of the bias and
it is flat since there is no information. The red probability
distribution is the estimation after 10 tosses, for example
X = [0, 1, 1, 1, 1, 0, 1, 1, 1, 1]. Its maximum is already at
80 percent, but it is wide because there is significant un-
certainty (it’s only 10 coin tosses). The green probability
distribution is obtained after 100 tosses; the maximum is
still at 80 percent and the distribution is narrower. The re-
sults are more accurate with more tosses (or connections),
which is appropriate for beaconing events that, by definition,
repeat many times. The Bayesian credible interval is analo-
gous to the confidence interval in frequentist statistics and
can be defined in several ways. The equal-tailed interval is
such that the probability of being below the interval is as
likely as being above it; this interval will always include the
median. A smaller range can be chosen where the proba-
bility density is highest, and this interval will include the
mode.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Beacon classifier

Figure 1. Bayesian probability that a coin is biased towards landing
heads 80% of the time after 0, 10, and 100 tosses (blue, red, green
lines respectively).

2.2. Kullback-Leibler divergence classifier

The KL classifier works best with time intervals between
connections and uses the Kullback-Leibler (KL) divergence
to compare a set of actual time intervals to what would be
expected from a random source, a known source, a typical
human, etc. connecting the same number of times. The KL
divergence from q to p is defined as:

DKL(p||q) =
∑
i

p(i) log
p(i)

q(i)
, (2)

the expectation value of the logarithmic difference between
probability distributions p and q. The number of events I =∑

i is used to create a synthetic distribution q in which the
time range is from 0 to the longest lapse in the distribution
of interest p and otherwise has the statistical properties of a
target distribution. For example, the behavior of a known
IP address could be used to create a synthetic distribution
with the same properties. For testing the methodology, we
used random distributions, and this is illustrated in Fig. 2.
If a user connects to a host 20 times in 2 minutes, it is likely
that the time elapsed between connections will be random,
whereas a beacon will be trying to connect, e.g., every 6
seconds or so. The KL divergence will be close to 0 if the
distribution of interest is indistinguishable from random and
larger than 0 otherwise. In order to get an accurate value for
the KL divergence, the synthetic distribution q needs to be
generated multiple times, and for each case, the divergence
of every q is calculated.

2.3. Experiment

We manually labeled datasets to tune each classifier and to
test their inherent quality. For the bias classifier, we used
500 sets of repeating events and for the KL classifier we only
needed 200 sets. A human decided whether they represented

Figure 2. The distribution p of a potential beacon (blue) and a
random distribution q that has the same number of events and
same longest time lapse (green). The two distributions are very
different so the KL divergence is large.

beaconing behavior or not. In each case, 80% of the events
were randomly selected and used to train the classifier, and
the remaining 20% were used to test the performance. A
receiver operating characteristic (ROC) curve is a common
way to evaluate and tune classifiers. In Fig. 3, the gray
diagonal line shows the performance of a completely ran-
dom classifier. Points above the diagonal represent better
than random results. The area under the curve is a measure
of how good the classifier is; the parameters that result in
the smallest distance to x = 0, y = 1, are the ones that
optimize the performance of the classifier (maximize the
recall and minimize the fallout). Also shown in Fig. 3 is the
performance improvement (detailed by dotted lines) of the
classifier when there is a longer collection time (20 minutes
vs 40 minutes). When used with the rest of the algorithm,
repeating event data will be collected until a determination
can be made at the error tolerance specified by the user.

Figure 3. ROC curve for two models used in the current invention
with a collection of time of 20 minutes and 40 minutes (long).

