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Dynamic Sign Language Recognition combining Dynamic Images and
Convolutional Neural Networks

Abstract
In this paper, we present a deep learning-based
method for Sign Language Recognition (SLR).
Our approach represents multimodal information
(RGB-D) through dynamic images to describe the
hand location and movement. Also, we extract a
representative frame that describes the handshape,
which is the input to two multi-stream CNN mod-
els. Next, we apply a later fusion stage for the
final classification. Experimental results prove the
feasibility of our approach.

1. Introduction
Sign Language (SL) is a visual-gestural language that uses
hand-shape variations, body movement, and even facial ex-
pression. The SL structure consists of primary (hand config-
uration, articulation, and movement) and secondary (orienta-
tion of the palm of hands, facial expressions) parameters that
are combined sequentially or simultaneously (Brito, 1995).
Recently, the success of automatic SLR systems has opened
up a new way to convert sign gestures into text/speech (Ku-
mar et al., 2017), contributing to improving the quality of
life of hearing-impaired people. Nevertheless, the SLR is
still a very challenging task due to the complexity of ex-
ploiting the information from primary and secondary param-
eters. Initial approaches were based on hand-crafted tech-
niques, e.g. Yang et al. (2009) used Dynamic Time Warping
technique (DTW); similarly, Ronchetti et al. (2016b) used
Hidden Markov Models (HMMs). Recently, deep learning
approaches are used to learn high-level features and pro-
cess dynamic signs (Neto et al., 2018; Konstantinidis et al.,
2018a; Zhang et al., 2017; Konstantinidis et al., 2018b). On
the other hand, low-cost depth devices such as Microsoft
Kinect (Zhang, 2012) provides multimodal information for
a sign (RGB-D and skeleton data) that improves the recogni-
tion rate. Alternatively, some authors propose the generation
of texture color maps to represent the 3D skeleton trajec-
tory (Kumar et al., 2018; Wang et al., 2016); other methods
encode video sequences into movement maps (Fernando
et al., 2017; Bilen et al., 2017). In this paper, our goal is
extract all the information of a sign (primary parameters),
we combine CNN models with texture/movement maps (dy-
namic images) to achieve a robust SLR system.

2. Method Overview
We follow a method based on the dynamic image generation
using the RGB–D and skeleton data captured by a Kinect
device to summarize a video sequence in single flow images
describing the posture, hand configuration, and motion of a
sign. Figure 1 illustrates our proposed SLR method. First,
we use the skeleton data to extract image patches belong-
ing to the hand movement area. Then, these patches are
used to generate five dynamic images. For RGB-D data, we
use the Rank Pooling method (Bilen et al., 2016; Fernando
et al., 2017) to generate dynamic images from color (DC)
and depth (DD) videos. For skeleton data, we extend the
Skeleton Optical Spectra (SOS) method (Hou et al., 2018)
to generate different spectral channels to encode the skele-
ton joints. Finally, we generate the DXY, DYZ, and DXZ
dynamic images that represent the movement of the joints
projected on the three orthogonal Cartesian planes.

Due to the short time duration of a sign, the hand shape is
missing because there are frames with high blur. Therefore,
we extract the most representative frame with the hand-
shape. First, we compute the distances between each con-
secutive joint coordinate of the hand and compute a vector
of accelerations Ah. Finally, we divide Ah into M seg-
ments; for each segment, we calculate its corresponding
standard deviation (SD). Then, we select the segment with
the minimum value of SD and extract the hand area from
the color (CH), and depth (DH) frames with the less rela-
tive degree of focus, using the energy of Laplacian as the
measure algorithm (Murali et al., 1992).

Besides, we propose two multi-stream CNN models called
3S–RGBD–CNN and 3S–SKL–CNN. In the first model,
DC, DD, and DH are the inputs, whereas, in the second
model, DH, CH, and the concatenation of DXY, DYZ, and
DXZ are the inputs. In our CNN models, we consider the
first four convolutional blocks of the pre-trained imagenet–
vgg–f model (Chatfield et al., 2014) using its filters as initial
parameters. Next, the output of the blocks Conv 4 of each
stream in both models are stacked and used as input to
a convolution layer. Then, we add three fully–connected
layers. Finally, we apply a later fusion to calculate the
average value of the two score vectors to obtain the final
classification score savg , where the highest score represents
the recognized sign class.
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Figure 1. Overview of the proposed Sign Language Recognition method.

3. Experiments on The LSA64 dataset
First, we use the LSA64 dataset (Ronchetti et al., 2016a),
which consists of 64 classes. The dataset does not provide
depth and skeleton data, whereas it presents several samples
balanced by class with high similarity. Therefore, we apply
the OpenPose library to estimate body points (Cao et al.,
2017). We conduct our experiments following the same
experimental protocol defined by the authors. Table 1 shows
the results. We note that the 3S–SKL–CNN model over-
comes several proposed methods (using only the skeleton
and shape of the hand) we can discriminate the majority of
signs on the LSA64 dataset (99.82 %). However, we still
need local information to improve results, i.e. the posture
movement of RGB-D data (3S–RGBD–CNN). The later
fusion improves the final recognition stabilizing the predic-
tions of the CNNs (99.91%). We observe this in the standard
deviation, which decreases to 0.33.

Table 1. Comparative results on the LSA64 Dataset.

Method Accuracy (mean ± std)
ProbSOM (Ronchetti, 2018) 91.70
3DCNN (Neto et al., 2018) 93.90 ± 1.40
ALL (sequence agnostic) (Ronchetti et al., 2016b) 97.44 ± 0.59
ALL-HMM (Ronchetti et al., 2016b) 95.92 ± 0.95
Deep Network (Konstantinidis et al., 2018b) 98.09 ± 0.59
skeleton + LSTMs (Konstantinidis et al., 2018a) 99.84 ± 0.19
3S–RGBD–CNN 96.92 ± 0.56
3S–SKL–CNN 99.82 ± 0.48
Later Fusion (3S–RGBD + 3S–SKL) 99.91 ± 0.33

4. Experiments on The LIBRAS dataset
We also propose a public Brazilian Sign Language dataset
(LIBRAS) composed of 56 highly similar classes based on
minimal pairs (Sandler, 2012). The dataset was performed

by five subjects, generating 600 samples per subject. The
dataset contains complete RGB-D and skeleton data cap-
tured by a Kinect device V1. For experiments, we use cross-
validation with five folds using different subjects for training,
validation, and testing. Table 2 shows the results. We ob-
serve that the hand-crafted and P-CNN methods achieve low
performance due to the complexity of the dataset. Again, we
note that the 3S–SKL–CNN model (74.25%) overcomes the
results of the 3S–RGBD–CNN model (72.44%); however,
the 3DCNN-LSTM outperform it with 74.27%. Nonethe-
less, the later fusion achieves 75.21% of accuracy with a
low standard deviation (2.97).

Table 2. Comparative results on the UFOP-LIBRAS Dataset.

Method Accuracy (mean ± std)
SC-CHM (hand-crafted) (Escobedo & Camara, 2016) 63.30 ± 2.90
P-CNN (CNN + SVM) (Chéron et al., 2015) 68.14 ± 1.32
3DCNN–LSTM (Zhang et al., 2017) 74.27 ± 3.30
3S–RGBD–CNN 72.44 ± 3.35
3S–SKL–CNN 74.25 ± 3.28
Later Fusion (3S–RGBD + 3S–SKL) 75.21 ± 2.97

5. Conclusion
In this paper, we proposed a method for Sign Language
Recognition. Most of the works in the literature use re-
current models or 3DCNN architectures; whereas, we use
dynamic images to encode the movement and location of the
hand with two Multi-stream CNN models. The experimen-
tal results prove the feasibility of our approach achieving
satisfactory results on the LSA64 dataset outperforming
state-of-the-art methods. On the LIBRAS dataset, the com-
pared methods achieve less than 80% of accuracy, due to
the high similarity between different classes.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Dynamic Sign Language Recognition combining Dynamic Images and Convolutional Neural Networks

References
Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., and Gould,

S. Dynamic image networks for action recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3034–3042, 2016.

Bilen, H., Fernando, B., Gavves, E., and Vedaldi, A. Action
recognition with dynamic image networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2017.
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Investigadores en Ciencias de la Computación (WICC
2018, Universidad Nacional del Nordeste)., 2018.

Ronchetti, F., Quiroga, F., Estrebou, C., Lanzarini, L., and
Rosete, A. Lsa64: A dataset of argentinian sign language.
XX II Congreso Argentino de Ciencias de la Computación
(CACIC), 2016a.

Ronchetti, F., Quiroga, F., Estrebou, C., Lanzarini, L., and
Rosete, A. Sign languague recognition without frame-
sequencing constraints: A proof of concept on the argen-
tinian sign language. In Ibero-American Conference on
Artificial Intelligence, pp. 338–349. Springer, 2016b.

Sandler, W. The phonological organization of sign lan-
guages. Language and linguistics compass, 6(3):162–182,
2012.

Wang, P., Li, Z., Hou, Y., and Li, W. Action recognition
based on joint trajectory maps using convolutional neural
networks. In Proceedings of the 2016 ACM on Multime-
dia Conference, pp. 102–106. ACM, 2016.

Yang, R., Sarkar, S., and Loeding, B. Handling movement
epenthesis and hand segmentation ambiguities in con-
tinuous sign language recognition using nested dynamic
programming. IEEE transactions on pattern analysis and
machine intelligence, 32(3):462–477, 2009.

Zhang, L., Zhu, G., Shen, P., Song, J., Afaq Shah, S., and
Bennamoun, M. Learning spatiotemporal features using
3dcnn and convolutional lstm for gesture recognition. In
Proceedings of the IEEE International Conference on
Computer Vision Workshops, pp. 3120–3128, 2017.

Zhang, Z. Microsoft kinect sensor and its effect. MultiMedia,
IEEE, 19(2):4–10, 2012.


