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1. Abstract

In this work, we present a novel model-free Reinforcement
Learning (RL) framework to design feedback controllers
for 3D bipedal locomotion. By appropriately incorporat-
ing insights from the reduced dimensional representation of
Hybrid Zero Dynamics (HZD)-based feedback controllers
for 3D robots, we propose a RL framework that yields sig-
nificantly improved data efficiency, lightweight network
structure and short training time. In addition, different from
other RL approaches, this method does not depend on prior
knowledge of reference trajectories. We demonstrate the
effectiveness of the proposed solution to generate a stable
walking control policy able to track various walking speeds
in different directions on a challenging bipedal robot, Cassie.
The controller is robust against external adversarial forces
applied at the torso in various directions. Furthermore, this
framework presents excellent versatility and generalization
due to its independence of a particular robot model.

2. Motivation

3D bipedal walking is a challenging problem due to the
multi-phase and hybrid nature of legged locomotion. Prop-
erties like underactuation, nonlinear dynamics, ground con-
tacts, and high degrees of freedom significantly increase
the model complexity. While model-based methods present
formal ways to design feedback control regulators for 3D
bipedal walking, these methods are limited by the accuracy
of mathematical models to capture the complex dynamics
of a 3D robot, which results in non-robust controllers that
require additional heuristic compensations and tuning pro-
cesses. (Grizzle et al., 2014)

Recent progress on deep learning has contributed to the
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popularity of Reinforcement Learning (RL) for solving chal-
lenging control problems in robotics. Existing RL methods
often rely on end-to-end learning algorithms that train a neu-
ral network (NN) using policy gradient methods, mapping
directly the state space to a set of continuous actions (Lil-
licrap et al., 2015; Schulman et al., 2017; Kidzinski et al.,
2018). Despite their success, such learning methods are
usually sampling inefficient and over-parameterized. More-
over, they may lead to motions unfeasible for real robots
and non-smooth control signals.

Through incorporating the insights of Hybrid Zero Dynam-
ics (HZD) with RL training, (Castillo et al., 2019) generated
feasible trajectories that are tracked by PD controllers to
produce effective walking gaits at different speeds. How-
ever, this method only works for a simple 2D robot model.
In (Xie et al., 2018), the authors adopts RL methods as part
of the feedback control of a 3D bipedal robot. However,
the method requires prior knowledge of a good reference
trajectory that is used as a based on top of which learned
compensations are added to achieve stable walking. An
imitation learning approach is applied in (Xie et al., 2019)
to a 3D robot, but it also requires a known walking policy
that is gradually improved through the learning method.

In this work, we present a novel model-free reinforcement
learning framework to design feedback controllers for 3D
bipedal locomotion. By appropriately incorporating insights
from the reduced dimensional representation of Hybrid Zero
Dynamics (HZD)-based feedback controllers for 3D robots,
we propose a RL framework that yields a significantly im-
proved data efficiency, lightweight network structure, and
short training time. In addition, different from other RL ap-
proaches, this method does not depend on prior knowledge
of reference trajectories. We demonstrate the effectiveness
of the proposed solution to generate a stable walking con-
trol policy able to track various walking speeds in different
directions on a challenging bipedal robot, Cassie.

3. Problem Formulation

To find feasible trajectories that render stable limit walking
cycles, the HZD framework needs to solve an offline opti-
mization problem using the robot’s full-order model jointly
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Figure 1. General structure of a traditional HZD-based controller
for 3D bipedal walking with heuristic feedback regulations.

with virtual constraints that are introduced to synthesize
feedback controllers. By designing virtual constraints that
are invariant through impact, an invariant sub-manifold —the
hybrid zero dynamics surface— is created, wherein the evo-
lution of the system is dictated by the reduced-dimensional
dynamics of the under-actuated degrees of freedom of the
system (Westervelt et al., 2007; Ames, 2014).

However, additional heuristic compensation regulators are
often required to compensate for the miss-match between
the mathematical model and the real 3D walking robot
(Gong et al., 2019; Reher et al., 2016). Usual regulators
used in the HZD framework include foot placement, torso
regulation, and ankle regulation. Figure 1 shows the scheme
of a traditional HZD-based controller with one main block
determined by a trajectory planning phase and a second
block determined by a feedback controller where the regula-
tions mentioned above are integrated as part of the feedback
regulation.

In general, based on feedback information from the robot’s
torso orientation and velocity, the compensations J, will
modify the original reference trajectories q¢ to obtain regu-
lated trajectories q..4 that improve the stability and robust-
ness of the walking gaits. Then, the error between the new
reference trajectory q,..q4 and the actual joint trajectories
d, is used by the low-level PD controllers to produce the
control action u, which is translated into the torque applied
to the robot joints.

4. Contribution

We propose a non-conventional RL framework that incor-
porates the physical insight of bipedal walking (symmetric
motion, hybrid nature, heuristic compensations) into the
control structure and learning process.

A diagram of the overall RL framework is presented in
Figure 2, where the trajectory planning stage of Figure 1 has
been replaced by a neural network that maps from a reduced
order of the robot’s state to (i) a set of coefficients « of the
Bézier polynomials that define the desired trajectory of the
actuated joints, and (ii) a set of gains corresponding to the
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Figure 2. Overall structure of the proposed RL framework, which
combines trajectory planning with feedback-based trajectory com-
pensation using additional heuristic regulators.

derivative gain of the joints PD controller K, as well as the
gains for the foot placement and torso regulations K ,,, K.

The neural network implemented for the learning process
has 4 hidden layers, each with 32 neurons. The input layer
takes the robot’s torso desired longitudinal and lateral ve-
locity (vZ, vgj), average longitudinal and lateral velocity
(vz V), average longitudinal and lateral velocity error (e,,_,
ey,), roll, pitch and yaw angles (0, ¢, 1), and roll, pitch and

yaw angular velocities (9, gz'S, ¢).

The connection between hidden layers is done through
ReLU activation functions, and the final layer uses a sig-
moid function to limit the range of the outputs. Independent
low level PD controllers are then used to track the desired
output for each joint, which enforces the compliance of the
HZD virtual constraints.

4.1. Learning Procedure

The proposed method can be trained with any RL algorithm
that can handle continuous action space, including evolution
strategies (ES) (Salimans et al., 2017), deterministic policy
gradient methods (Silver et al., 2014), and proximal policy
optimization (Schulman et al., 2017). In particular, we
used ES for training the network with the following reward
function:

r=Wwr, (1)

with a vector of 8 customized rewards r and the weights w.
Specifically,

T
r= [rvm ’ Tvy yThyTuy, TCOM » Tang, Tangvel de} . (2)

The selected reward encourages velocity tracking (through
Tw, s Tv, )» height maintenance (rp,), energy efficiency (ry)
and natural walking gaits (rcoas, Tang» Tanguvel, T fd)-
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Figure 3. Performance of the learned policy while tracking varying
desired longitudinal and lateral walking speeds.

5. Simulation Results

To validate the proposed method, a customized environment
for Cassie was built using Mujoco (Todorov et al., 2012)
and the model provided by Agility Robotics (Agi). The
NN has 5069 trainable parameters, and the training time is
about 10 hours using a single 12-core CPU machine. The
performance of the trained control policy was evaluated
in terms of (i) speed tracking, (ii) convergence of stable
periodic limit cycles, and (iii) disturbance rejection. The
main results are listed below.

5.1. Speed Tracking

Thanks to the decoupled structure of the proposed con-
troller, the learned policy is able to track any desired walking
speed and direction within the ranges [—0.5, 1.0] m/s and
[—0.3,0.3] m/s for longitudinal and lateral speed respec-
tively as shown in Figure 3. It is important to denote that
the oscillations shown during the tracking of the desired
speed are caused by the natural motion described by the
torso of the robot during dynamic walking, and that similar
effects can be seen in human walking motion and different
controllers for bipedal walking robots (Hereid et al., 2014),
(Daetal., 2016).

5.2. Stability of the Walking Gait

Figure 4 shows the results when analyzing the stability of
the walking gaits realized by the proposed controller. The
joints trajectories generated by the trained control policy
converge to periodic limit cycles, and the orbit described by
corresponding joints in the left and right side are symmetric,
showing that the controller realizes stable walking gaits.

0.5

o
=)

—— Left Hip Roll //

—— Right Hip Roll
-0.5 0.0 |1
E 1.0
B '=0.09 -0.08 -0.07 -0.06 0.05 0.06 0.07
- — 0.5
2 10— Left Hip Pitch
(o]
o 0.0
T 05
2 -0.5
& 00 :
3 Right Hip Pitch
> _ -
c -0.5 10
S -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02
c
5 —
0 0
Right Knee
] Left Knee -10
-1.8 -1.6 -1.4 -1.8 -1.6 -1.4

Joint angle (rad) Joint angle (rad)

Figure 4. Walking limit cycle of the learned policy with the desired
longitudinal velocity of 0.5m/s.
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Figure 5. Robustness of the controller when an adversarial force is
applied in the forward direction to the robot’s pelvis.

5.3. Robustness

The robustness of the controller was tested by applying
adversarial forces at the robot’s pelvis in the forward and
backward directions. The policy handles effectively forces
up to 40 N in the forward direction and 45 N in the backward
direction without falling or affecting the stability of the
walking gait. This result is shown in Figure 5, where a force
of 25 N is applied in the backward direction when the robot
is walking with a longitudinal velocity of 0.8 m/s and a
lateral velocity of 0 m/s.

Finally, we denote that we do not present a comparison
of our method with a baseline RL algorithm. The main
reason for this is that traditional baseline RL algorithms
fail to obtain feasible motions that can be applied on actual
bipedal robots. Thus, additional strategies such as imitation
learning, iterative learning (Xie et al., 2019), or curriculum-
driven learning (Xie et al., 2020) are required to obtain such
feasible policies.
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