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Abstract
Urolithiasis is a common disease around the world
and its incidence has been growing every year.
The accuracy of the diagnosis is crucial for the
prescription of an appropriate treatment that can
eliminate the stones and diminish future relapses.
This paper presents an effective supervised learn-
ing method to automate and improve the accuracy
of the classification of kidney stones, as well as
a dataset consisting of kidney stone images cap-
tured with ureteroscopes. In the proposed method,
the image features that are visually exploited by
urologists to distinguish diferent types of kidney
stones are analyzed and encoded as vectors and
fed to Random Forest classifier. The obtained clas-
sification results (89% accuracy) outperforms pre-
vious methods by more than 10% and shows that
the implementation of automated image analysis
techniques is feasible in the uretoscopic practice.

1. Introduction
Kidney stones that cannot drain naturally from the urinary
tract are destroyed during an endoscopic intervention called
ureterorenoscopy. Digital endoscopes allow for the inser-
tion of a laser to fragment and remove the stones from
the urinary tract (a laser lithotripsy technique called “dust-
ing”). The biochemical composition of some of the col-
lected fragments is systematically analyzed to understand
the metabolic cause of the kidney stone formation. More-
over, morpho-constitutional analyses carried out under the
microscope and infrared spectrometer can reveal the compo-
sition of pure or multi-layered stones and allow to establish
treatments (e.g., diets, drug treatment) to reduce relapses in
terms of stone formation (Daudon & Jungers, 2012).
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Although this widespread technique is useful, it presents
two drawbacks: (1) removing all stone fragments can be
a tedious procedure lasting from thirty minutes to an hour,
and (2) morpho-constitutional analytical results are usually
available several weeks after the endoscopy, hindering the
immediate treatment that is usually recommended depend-
ing on the kidney stone type (Cloutier et al., 2015).

Therefore, an intra-operative morphological and automated
classification of kidney stones could alleviate these prob-
lems, since a description of the visual aspect (e.g., morphol-
ogy, colors and textures) of their surface and cross-section
is available for each class for the images acquired during
in vivo ureteroscopic interventions (see the tables given in
(Estrade et al., 2017) and Fig.1). However, this operator-
dependent recognition requires a great deal of experience
due to the high inter-class similarities and intra-class varia-
tions, and can only be achieved by few specialists, whereas
the urologists deal with urolithiasis in a daily basis.

Thus, in this work we present an machine learning-based ap-
proach for classifying in vivo images obtained using uretero-
scopes (URF-V and URF-V2 endoscopes from the Olym-
pus). We have build a dataset consisting of 125 images of
the most prevalent kidney stones, divided in three classses
(i.e., Whewellite, Weddellite, and Uric Acid) which was
validated and labeled by urologists with expertise in the
domain. We carried a thorough feature analysis to deter-
mine the most discriminant information from the samples
and performed an ablation study using various classifiers
to validate the feature extraction. We then chose the best
performing model (based on a Random Forest classifier)
and compare it with other works in the state of the art.

Figure 1. In vivo kidney stone images belonging to three different
classes: Whewellite, Weddellite and Uric Acid.
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2. Related Works and Motivation
Few automated methods for classifying kidney stones im-
ages have been published to date (Kazemi & Mirroshandel,
2017) and those using image analysis techniques are rather
scant due to the lack of large image databases. For in-
stance, the work of (Serrat et al., 2017) presented a method
in which texture features (coded as Local Binary Patterns,
LBP) and color features (RGB histograms) were extracted
and injected into a Random Forest classifier. Although the
average accuracy of this approach was relatively low (63%),
the results showed that the texture and color information are
discriminant enough to automate the classification (Pless
et al., 2019). A continuation of the previous work improved
the classification results by using deep learning techniques
(Torrell Amado, 2018), as did the work presented in (Black
et al., 2020). However, the two latter approaches yielded
limited improvements due to the small size of the dataset.

Another major limitation of these previous works lies in
the fact that the utilized images were neither acquired in
vivo (in the patient) nor with an ureteroscope. Fragments of
kidney stones were placed into a closed device allowing for
strictly controlled illumination conditions. The stones were
also placed in such a way that the surface and cross-section
of the fragments were fully visible in the captured images.

Conversely, in clinical scenarios the imaging conditions are
highly uncontrolled: the acquisition angles and distances
are somewhat random since the ureteroscope position with
respect to a fragment cannot be easily controlled; the images
can be affected by motion blur and specular reflections; and
the scene illumination depends notably on the ureteroscope
position and the surrounding tissue. To the best of our
knowledge, no other works have tackled the problem of
analyzing and automatically classifying images acquired
under the aforementioned conditions.

In this sense, our main contributions are threefold: 1. A
new dataset of in vivo kidney stones images obtained using
digital endoscopes. 2. A thorough analysis of the most
important characteristics needed for classifying samples
with high inter-class similarities and intra-class variations
and 3. A method based on machine learning techniques to
demonstrate the feasibility of an automated method to tackle
this problem in a clinical setting.

3. Proposed Method and Results
It has been proven (Estrade et al., 2017; Serrat et al., 2017)
that textures and colors are the most discriminant features
to visually differentiate the kidney stone classes. Therefore,
texture and color features were extracted using Scikit-Learn
and gathered in descriptor vectors of 40 components each,
where 10 components correspond to texture information and
the other 30 to color information.

Table 1. Average classification accuracy of the tested model.
Sub-dataset Classifier Features Accuracy
Section RF LBP + e(HSV) 89%
Surface RF LBP + e(HSV) 79%

The surface and cross-section images were used as two sep-
arate training and testing phases. Patches of 200 × 200
pixels were cropped from the original images to increase
the number of images in the sub-datasets (781 in total).
The patches only contain information of the 3 kidney stone
classes (the background such as organs tissue is not visible
in the cropped images) as it has been observed that both tex-
ture and color patterns are very similar for different regions
of the kidney stone surfaces and cross-sections (Estrade
et al., 2017) (Serrat et al., 2017).

We made use of a Random Forest (RF) classifier due to their
accurate performance with small datasets (<1,500 samples)
and good performance with stone-textured images, as shown
in (Serrat et al., 2017). Other models were tested as well,
but we decided to present only the results obtained using RF
for conciseness, which are summarized in Table I. Scikit-
Learn’s Random and Grid Search were used to find the
most efficient parameters. For the sub-dataset containing
the surface images, a Random Forest with 160 Decision
Trees (DTs) was built, while for the cross-section sub-datset,
only 40 DTs were needed to obtain the most accurate results
without overfitting. Due to the reduced size of the dataset,
the K-fold cross validation strategy was used to train and
test the classification models.

As it can be observed in Table I, we obtained very good
results for both surface and section images; in contrast,
(Serrat et al., 2017) obtained an average precision 63%,
whereas (Torrell Amado, 2018) obtained an improvement
of about 10% making use of a deep neural net.

4. Discussion and Future Work
In this paper we presented a method for classifying in vivo
kidney stone images. Compared to previous works, our
dataset is encompassed by more challenging images ac-
quired via uretoscopes. Despite of issues like widely varying
illumination conditions and blurring, we have demonstrated
that an effective feature extraction and model selection can
yield superior results. The images were obtained by urolo-
gists in several hospitals and the results presented here have
been corroborated with a team of experts, who consider that
the presented method has a strong clinical potential.

As future work, we plan to incorporate other types of renal
calculi not acquired at the time of this study, and to explore
the use of deep learning architecture making use of a few-
shot learning approach.
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