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Abstract
Semantic segmentation task aims to create a dense
classification by labeling pixel-wise each object
present in images. Convolutional Neural Net-
work (CNN) approaches have been proved useful
by exhibiting the best results in this task. How-
ever, some challenges remain, such as the low-
resolution of feature maps and the loss of spatial
precision, both produced in the CNNs by limited
local neighborhoods, i.e., filters with small size.
In this work, we propose an encoder-decoder ar-
chitecture with skip connections based on Graph
Neural Network (GNN) (hereafter called GNN-
block). This GNN-block proved to have a greater
receptive field by having a global vision of objects
and their relationships, thus providing additional
global information to the model. Finally, we
present preliminary results on Cityscape database,
achieving close performance with state-of-the-art.

1. Introduction
Humans possess a remarkable ability to parse images sim-
ply by looking at it. In a blink of an eye, we are able to
fully analyze an image and separate all the components
present on it. Furthermore, we can easily generalize from
observing a set of objects to recognizing objects that have
never been seen before. The human ability to separate com-
ponents (i.e., join regions) in an image according to some
features is called image segmentation (Gonzalez & Woods,
2006). Trying to reproduce this human skill on a computer
is not an easy task, and several approaches were proposed
to address it (Chouhan et al., 2019). Nevertheless, the seg-
mentation task continues to be challenging, due in large
part to variability, i.e., there is a considerable variation in
pose, appearance, viewpoint, illumination, and occlusion
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throughout the image. Thus, a type of segmentation com-
monly used is semantic segmentation, which is an essential
part of the pipeline projects since it extracts and analyzes
useful information by classifying the regions into an image.
For instance, self-drive vehicles (Zhou et al., 2019), seg-
mentation on X-ray (Bullock et al., 2019), crown detection
on dental X-ray (Wang et al., 2016), brain tumor segmenta-
tion (Pereira et al., 2019), and remote sensing (Bokhovkin
& Burnaev, 2019). Note, by improving the segmentation
stage, the final result is also improved. In recent years the
Fully Convolutional Networks (FCN) (Long et al., 2016)
achieve significant improvement in semantic segmentation
task, by converting fully connected layers into convolutional
layers and upscale operations. However, with this approach,
new problems have been observed, such as (Chen et al.,
2017a; Lin et al., 2017b): i) the low-resolution obtained in
the output of the CNNs; and ii) the loss of spatial precision
of objects within the image. Following, we exhibit different
models created to deal with these problems.

FCN were used with post-processing steps. Conditional
Random Fields (CRF) (Zheng et al., 2015) or Gaussian
CRF (Vemulapalli et al., 2016) are common post-processing
steps but are computationally expensive; consequently, em-
bedding it within a network is a viable solution (Chen et al.,
2017a). Other authors (Liu et al., 2018; Chen et al., 2018a)
proposed to obtain a fine adjustment from the bounding
boxes. Instead of making an abrupt prediction of the last
layer of CNN, the hourglass approach (Ronneberger et al.,
2015; Badrinarayanan et al., 2017; Amirul Islam et al., 2017)
created an up-sampling stage in a controlled manner (de-
convolutions and unpooling). Moreover, models take into
account different scales (Lin et al., 2017a). These models
get a full semantic map in low-resolution (coarse prediction
map), then refine it with different fusion operations, e.g.,
fusion cascade (Zhao et al., 2018) and attention blocks (Yu
et al., 2018). Contrary to multi-scale models, the approaches
that use Atrous Spatial Pyramid Pooling (ASSP) (Chen
et al., 2017a;b; Zhao et al., 2017; Chen et al., 2018b; Valada
et al., 2019) modify the filters size instead of the size of the
images. This modification is achieved using atrous convo-
lution (Chen et al., 2017a), i.e., sparse filters, to generate
features with large receptive field without sacrificing spatial
resolution. In theory, this should be true, but later experi-
ments showed that there are still insufficiencies to get global
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Figure 1. Illustration of our proposed architecture, which works
with the local information (encoder and decoder stage) and with
the global information processed by the GNN-blocks (skip con-
nections).

features (Wang et al., 2018). Although previous models
improve the problem of semantic segmentation, especially
the low-resolution of output maps, the issue of spatial pre-
cision loss persists. It is produced in the CNNs by limited
local neighborhoods, i.e., filters with small size and regular
shape. Then, the next stage is dealing with this problem.
Thus, current approaches (Chen et al., 2019; Li & Gupta,
2018) based on GNNs proved to have a greater receptive
field by having a global vision of objects. Unlike these mod-
els that perform graph convolution only in latent space, we
create a GNN-block capable of being used anywhere on the
network (e.g., between successive CNN layers or into skip
connections).

2. Methodology
In this work, we design a new deep learning architecture
that is end-to-end trainable to address the semantic seg-
mentation task on images. Our architecture combines local
features extraction of CNNs with the global features extrac-
tion of GNNs and their irregular connections between pixels
through GNN-blocks (light blue squares in Fig. 1). Thus,
our neural network aims to produce densely labeled images.

We base our architecture on the well-behaved UNet (Ron-
neberger et al., 2015) model to work with local and global
(poor) information through its encoder and decoder stage.
Furthermore, additional global information is embedded in
our model through the creation of GNN-blocks. For this, we
carry the image features from the original space (Euclidean
space) to a graph space. That is, from pixel features to nodes
ones. Here, we transform the features of the nodes through
convolutions on the graph (Kipf & Welling, 2017). Then,
we return to the original space and concatenate it with the
features from the down-level (skip connection in Fig. 1).

At a given layer l on the alternating process, we use a func-
tion f(X) to bring pixel featuresX ∈ Rh×w×c to dl hidden
features, H(l) ∈ Rn×dl , for each of our n nodes, and the set

Table 1. Results on Cityscape validation set for semantic segmenta-
tion task, using 11 classes and with crop size of 384× 768. Table
taken from (Valada et al., 2019). Our model is denoted by the
symbol *. Best performances in bold.
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SegNet 73.74 79.29 92.70 59.88 13.63 81.89 26.18 78.83 31.44 45.03 43.46 52.17
FCN8 76.51 83.97 93.82 67.67 24.91 86.38 31.71 84.80 50.92 59.89 59.11 59.97
FastNet 77.69 86.25 94.97 72.99 31.02 88.06 38.34 88.42 52.34 61.76 61.83 68.52
DeconvNet 89.38 83.08 95.26 68.07 27.58 85.80 34.20 85.01 27.62 45.11 41.11 62.02
DeepLabv2 74.28 81.66 90.86 63.30 26.29 84.33 27.96 86.24 44.79 58.89 60.92 63.59
ParseNet 77.57 86.81 95.27 74.02 33.31 87.37 38.24 88.99 53.34 63.25 63.87 69.28
DeepLabv3 92.82 89.02 96.74 78.13 41.00 90.81 49.74 91.02 64.48 66.52 66.98 75.21
GNN-block* 93.64 88.69 96.42 74.63 41.46 90.97 52.30 89.79 69.40 70.36 68.59 76.02
AdapNet++ 94.18 91.49 97.93 84.40 54.98 92.09 58.85 93.86 72.61 75.52 72.90 80.80

of edges encoded into a sparse matrix A(l) ∈ [0, 1]n×n that
represents the graph. Then, to obtain global features, we
use convolutional graph operations (Kipf & Welling, 2017)

H(l+1) = σl

(
τ
(
A(l)

)
H(l)W (l)

)
, (1)

where W (l) ∈ Rdl×dl+1 is the learnable weight matrix for
the lth layer, σl(·) is a non-linear function, and τ(·) is a sym-
metric normalization transformation of the sparse matrix,
defined by

τ
(
A(l)
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(
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2
(
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)(
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)− 1
2

, (2)

where D̂(l) is the degree matrix of the graph plus identity,
that is,

D̂(l) = D(l) + In, (3)

where D(l) is the degree matrix of A(l), and In is the iden-
tity matrix of size n × n. Finally, we use the function
g(H(l+1)) to convert the features from node to pixel (i.e.,
from graph space to original space). In summary, our GNN
block produces a feature vector X ′ ∈ Rh×w×dl+1 defined
by,

X ′ = g
(
σl

(
τ
(
A(l)

)
f(X)W (l)

))
. (4)

3. Experiments and Conclusions
We use the Cityscapes (Cordts et al., 2016) dataset, with
2979 images in the training set, and 500 images in the val-
idation set. Each image was resized to 768 × 384 pixels
with labels of 11 semantic classes (Valada et al., 2019); We
present quantitative and qualitative results in Table 1 and
supplementary material, respectively.

In this work, we show that by adding global information ob-
tained through holistic operations (i.e., graph convolution),
we can improve the performance of the semantic segmenta-
tion task achieving results proximate to the state-of-the-art.
Note that our model only uses unimodal (RGB) information
as opposed to multimodal model AdapNet++ (Valada et al.,
2019) (RGB and depth maps).
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SUPPLEMENTAL MATERIAL

A. Quantitative Results
In Fig. 2, we present qualitative results on the validation set of the
Cityscape dataset with image size of 384× 768.

(a) Image (b) Ground truth (c) Prediction

Figure 2. Quantitative results on Cityscape validation set for semantic segmentation task, using 11 classes and with crop size of 384× 768.


