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Abstract

An image preprocessing methodology based on Fourier
analysis together with the Laguerre-Gauss Spatial Filter is
proposed. This is an alternative to obtain features from
aerial images that reduces the feature space significantly,
preserving enough information for classification tasks. Ex-
periments on a challenging data set of aerial images show
that it is possible to learn a robust classifier from this trans-
formed and smaller feature space using simple models, with
similar performance to the complete feature space and more
complex models.

1. Introduction

Image preprocessing techniques aim to enhance an im-
age’s relevant features and suppress those that are consid-
ered noise for the task at hand [23]. This process involves
transforming the representation, usually a matrix filled with
intensity values, following a predefined procedure. The de-
sire to obtain an enhanced or smaller representation comes
from different areas such as medical diagnosis, informa-
tion transmission and compression, digital photography and
computer vision (CV).

An effective preprocessing might result in the solution of
CV problems with simple learning algorithms. This simple
models make a more efficient use of the data, which means a
time reduction during inference and training, something that
is crucial for real-time applications or problems that require
online learning. Also, the memory and disk space footprint
is reduced. It is important to note that simpler solutions
are easier to interpret most of the time, resulting in models
whose inner workings are clearer.

Therefore, this work explores the applicability of pro-
cedures that reduce an image’s feature space to perform

classification tasks using k-Nearest Neighbors (kNN) [5]
and Multilayer Perceptrons (MLP) [17; 8], which are mod-
els currently displaced -in this task- by more powerful but
expensive models such as Convolutional Neural Networks
(CNN) [11; 8].

The employed approach is based on spectrum analysis
tools, particularly Fourier analysis. It uses the Laguerre-
Gauss Spatial Filter (LGSF), as kernel, proposed by Gou et
al. [9], who state that “it allows the realization of a radial
Hilbert transform with high contrastive and isotropic edge
enhancement without resolution loss”. This means that the
borders will be intensified (in all directions), thus making
them easier to detect. In [3] the authors compare LGSF
against other common edge enhancing technique (Laplacian
filtering) and found it to be superior given that it acts as a
bandpass reducing low and high frequency noise, and that it
“distributed homogeneously and smoothly the intensity of
the magnitude of the Fourier spectrum due to its isotropic
feature”. The latter statements are an indication that a line
profile, along an axis of an image preprocesed with this fil-
ter, will result in a coherent curve. Is this line profile, taken
along the x- and y-axis, that will be used in this work as
the feature space during classification. Furthermore, the re-
sults from Sierra-Sosa et al. [21] showed that, after Double
Fourier analysis, the line profile of a voiced speech was use-
ful to classify emotions.

Using the feature space obtained from the principles de-
scribed above, it was possible to obtain good performance
on multiple classification tasks such as Geometric Shapes
and Aerial Images, where CNN were replaced by kNN and
MLP. As a preliminary result, this preprocessing methodol-
ogy could be extended to other CV tasks.

Concretely, the contribution of this paper is the descrip-
tion of an image preprocessing methodology to reduce the
dimensionality of the data and perform classification with
simple models. Particularly, a challenging data set of Aerial
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Images will be classified using this method.
The code implementation of Laguerre-Gauss Prepro-

cessing and the presented results is available on GitHub 1.
The remaining of this article is organized as follows.

Section 2 gives an overview of the related work. Section 3
goes over the preliminary theoretical framework. In Section
4 the proposed methodology for image feature space reduc-
tion and classification is described. Section 5 presents the
data sets employed and the results obtained. Section 6 dis-
cusses the results. Finally, Section 7 introduces the reached
conclusions.

2. Related Work
Line Profiles. Sierra-Sosa et al. [21] use Fourier anal-

ysis on spectrograms of audio recordings to identify the
speaker’s emotions using the spectrum’s line profile. In [7]
multiple line profiles, whose position are based on max-
ima in the Hough transform space, are used to recognize
logos (classification over invariant classes). In [15] the au-
thors employ line intensity profiles to identify reflections
in eye images, which are then classified as reflections or
non-reflections using a suport vector machine. Bhan et al.
[1] use feature line profiles from preprocessed radiographic
images to detect dental caries and their severity.

The works described above, specially those on images,
work over very restricted spaces. In the Aerial Images clas-
sification task the environments and elements of each class
have higher variation.

Aerial Images. In [26; 14] the authors propose CNNs to
detect objects from aerial images. Qayyum et al. [13] use
CNN to classify scenes in aerial images extracting features
in multiple scales which are then encoded into global image
features.

3. Preliminaries
This section introduces the definitions and theorems

(based on [6]) behind Laguerre-Gauss Preprocessing, which
is described in Section 4.

3.1. Integral Transforms

Def. An Integral Transform is defined as

I{f(x)} = F (k) =
∫
s

K(x,k)f(x)dx (1)

where x = (x1, x2, . . . , xn),k = (k1, k2, . . . , kn), S ⊂
Rn and K is the kernel of the transform. The inverse trans-
form is an operator such that

I−1{F (k)} = f(x) (2)

1https://github.com/AlejandroMllo/
Laguerre-Gauss-Preprocessing

3.1.1 Convolution

Def. The Convolution of two integrable functions f(x) and
g(x), denoted by (f ∗ g)(x), is

(f ∗ g)(x) =
∫ ∞
−∞

f(x− ξ)g(x)dξ (3)

Convolution Theorem. If I{f(x)} = F (k) and
I{g(x)} = G(k), then

I{f(x) ∗ g(x)} = F (k)G(k)
f(x) ∗ g(x) = I−1{F (k)G(k)} (4)

Furthermore, commutativity, associativity and distribu-
tivity is valid under a convolution.

3.1.2 Fourier Transform

A particular case of an integral transform is the Fourier
transform which turns a function’s (signal) time domain into
its frequency representation.
Def. The Multiple Fourier Transform of f(x), where x =
(x1, x2, . . . , xn) is the n-dimensional vector, is defined by

F{f(x)} = 1

(2π)
n
2

∫ ∞
−∞
· · ·

∫ ∞
−∞

exp {−i(k · x)}f(x)dx

(5)
where k = (k1, k2, . . . , kn) is the n-dimensional vector,

k · x = k1x1 + k2x2 + · · · + knxn and f(x) is absolutely
integrable.

3.2. Hilbert Space

Def. LetH be a vector space. A bi-linear mapping < ·, · >:
H × H −→ R is an inner product if it satisfies symmetry,
linearity and positive definiteness.
Def. A vector space H is a Hilbert space if it is a complete
inner product space.
Def. Given a Hilbert spaceH, a feature mapping φ : x −→ H
is a function such that φ(x) ∈ H.
Theorem. Any feature mapping defines a valid kernel.

Note that having a Hilbert space enables transformations
in any number of dimensions. Once a kernel is obtained, a
transformation, as defined in 1, can be performed using it.

3.3. Laguerre-Gauss Spatial Filter (LGSF)

The LGSF is the kernel employed during preprocessing
to enhance the edges and reduce low- and high- frequency
noise [9; 3].

The filter, proposed by Guo et al. [9], in the spatial do-
main is given by [12]

LG(x, y) = (iπ2ω4)(x+ iy) exp {−π2ω2(x2 + y2)} (6)

https://github.com/AlejandroMllo/Laguerre-Gauss-Preprocessing
https://github.com/AlejandroMllo/Laguerre-Gauss-Preprocessing
https://github.com/AlejandroMllo/Laguerre-Gauss-Preprocessing


where ω is a parameter that controls the bandpass filter
size. As ω approaches 1 it favors higher frequencies, that is,
thinner edges.

3.4. Line Profile

The line profile of a matrix is the sampling of its values
along a path.

This work uses the line profiles taken along a line seg-
ment that crosses the origin and is parallel to the x− and
y−axis.

In the case of images in the spatial domain, the line pro-
file samples the intensity value of its pixels. If the image
is in the frequential domain, the line profile samples a fre-
quency, which is a complex number z. To visualize the sam-
pled frequencies it is possible to take the amplitude (which
is the absolute value of z), its phase, its real or its imaginary
component.

4. Proposed Method

  

Image Transformed
Image

Classifier        0, 1
I∗LG Line Profile

  0
  4
 0.1
   .
   .
   .
 0.3
  0
-0.2

Figure 1. Overview of Laguerre-Gauss Preprocessing.

4.1. Overview

Figure 1 summarizes the Laguerre-Gauss preprocessing
procedure. The methodology is based in the application of
integral transforms as described in Section 3.1. It acts on
a function to produce another simpler representation. This
might also happen to be interpretable and enable compari-
son between other functions who undergone the same trans-
formation process.

Particularly, this transformation process involves getting
the Fourier’s spectrum representation from the image Î and
the LGSF L̂G filter introduced in Section 3.3. Once both
analytic signals are obtained, given that they are no longer
in the spatial domain, their convolution is their point-wise
multiplication I ∗ LG = Î · L̂G. Here LG is acting as a
feature mapping, therefore it is considered a valid kernel, as
seen in Section 3.2.

The remaining steps involve shifting the zero-frequency
components to the center of the image to obtain an image
whose origin is at its center. Then the line profiles are sam-
pled along the x− and y−axis.

This procedure means that if an image of size n × n is
being classified, the classifier will only need 2×n features,
reducing significantly the feature space.

4.2. Laguerre-Gauss Preprocessing

In order to reduce the model’s dimensionality, the input
images will be preprocessed to obtain a set of features rep-
resentative of the elements present on it.

Preprocesssing is as follows:

1. Create the Laguerre-Gauss filter [12] from equation 6
with the same size as the image and a given ω. It is
usually set to ω = 0.9 to better distinguish the image’s
borders.

2. Apply Fourier’s transform to the filter and the image.

3. Once the analytic signal of both the filter and the im-
age is obtained, they are convolved. This is done
through element-wise multiplication. Since the filter
is 2-dimensional, the images should be transformed to
one channel (i.e., grayscale) or apply the filter to each
or a set of channels on a channel-wise basis.

4. Next, the zero-frequency components are shifted to the
center of the spectrum. This means that the origin of
the image will be its center.

5. Finally, the x and y line-profiles are obtained from the
shifted image. This is the vector representing the spec-
trum along the origin in the x− and y− axis respec-
tively.

Algorithm 1 presents the pseudocode of the Laguerre-
Gauss Preprocessing procedure.

Algorithm 1: Laguerre-Gauss Preprocessing
Data: image, ω
s← size(image);
filter← LaguerreGaussFilter(ω, s);
imageFT ← FourierTransform(image);
filterFT ← FourierTransform(filter);
convolved← imageFT · filterFT ;
shifted← shift(convolved);
x-profile← LineProfile(shifted, axis = x);
y-profile← LineProfile(shifted, axis = y);
return x-profile, y-profile

5. Results

This section describes the data set and classifiers em-
ployed, together with the results from using each of them
with Laguerre-Gauss preproprocessing, and without it.
Also, it presents the results from a couple of ablation experi-
ments to show the utility of this preprocessing methodology
as a whole.



5.1. Data Sets

5.1.1 Geometric Shapes

This data set is a mix of [19; 10; 18; 25] which combines
computer generated and hand-drawn geometric shapes. All
images are resized to 64 × 64 pixels. Basically, the images
are monochromatic with different sizes, rotations and defor-
mations. Specifically, the shapes to be classified are Circles
(which includes ellipses), Squares (which includes rectan-
gles) and Triangles. Table 1 shows the data set specificities.

Set Circles Squares Triangles Total
Train 3277 4058 3608 10943

Validation 859 803 720 2382
Test 889 847 600 2336

Table 1. Description of Geometric Shapes data set.

5.1.2 Aerial Images

This data set was collected to identify illegal mining and
deforestation in large areas. The images come from multi-
ple news agencies [2; 16; 20; 24] which have covered this
phenomena. The idea is to classify an image in the class 1
if it contains something of interest (i.e., heavy-equipment,
boats, deforestation, etc.); or as class 0 if it does not (i.e.,
forest, rivers, populations, etc.). The data set contains 5707
instances (resized to 64×64 pixels) of which 3297 (57% of
the total) images are samples of class 0 and the remaining
are samples from class 1. The data was augmented to 20000
instances through random rotations (±20◦, 90◦, 270◦), left-
to-right and top-to-bottom flips.

The main challenge posed by this data set is the infinite
number of possible camera angles and altitudes from which
the images are taken. Also, the noise added by images from
moving cameras, fog, clouds and changing climates. Note
that not all images come from the same distribution, since
they are taken in different locations with different kinds of
sensors.

5.2. Classification

Three kinds of learners (kNN, MLP & CNN) were
used to test the preprocessing methodology against no-
preprocessing, or a flattened representation of an image.

The kNN employed a value of k = 1 for the number of
neighbors in all tasks.

The MLP used the same architecture for all tasks (re-
gardless of the data representation), therefore the results re-
ported here might be improved with custom-made architec-
tures. The MLP featured an input layer with 128 units, two
hidden layers with 64 and 32 units respectively, and an out-
put layer with as many units as the number of classes in the
problem. For regularization, a dropout layer was embedded

after each of the three initial layers, with probability 0.5,
0.25 and 0.25, respectively.

The CNN also used the same architecture for all tasks.
The architecture is shown in Figure 2. It was chosen from
[4], such that it had an excellent performance on MNIST,
therefore the results for other data sets might be improved
with different architectures.

Finally, both the MLP and CNN used categorical
crossentropy as loss and RMSProp as optimizer. Also, all
their layers used relu as activation function, except the last
one which used softmax. No hyper-parameter tuning took
place.

5.2.1 Geometric Shapes

Table 2 presents the classification results using three kinds
of models (kNN, MLP and CNN). It describes the scores
obtained using a flattened representation of the image’s
pixel intensities matrix and compares it with the classifi-
cation scores using Laguerre-Gauss Preprocessing (LP). A
quick glance returns that the classifiers using LP did better,
except in the case of CNN, but considering the disk space
trade-off and the inference time, the MLP might be a better
option for real-time and embedded applications, since the
score’s difference is minimal.

Figure 5 shows the mean line profiles for the train in-
stances of the geometric shapes. From it is possible to see
the differences in the frequency spectrum within the differ-
ent shapes; this differences can also be appreciated by the
learners.

5.2.2 Aerial Images

The results of the classification of aerial images are reported
on Table 3. There it is possible to see that the MLP us-
ing the flattened representation of the image cannot break
the class imbalance as the accuracy never goes above 57%,
which is confirmed by the F1 score. On the other hand, the
MLP using the LP representation does really well on the
data set obtaining around 80% accuracy. It is remarkable
the size difference of this model with the other ones tested.
In the case of the kNN implementation, even though the
flattened representation has slightly better performance, its
size might be a constraint when deploying on resource con-
strained environments. The huge difference in size is due
to the fact that kNN need to store the support seen during
training, as a result a smaller feature space, such as LP, will
inevitably result in a smaller and faster model.

Figures 3 and 4 show the Receiver Operating Character-
istic (ROC) curve of the kNN and MLP models employing
the LP feature space. The results displayed on the figures
are a good indication of the combined precision and recall
of the models.



Figure 6 shows the mean line profiles for the classes in
the data set. Here, similar to the case of geometric shapes,
the differences in the frequency spectrum are observable,
allowing the models to learn them too.

The CNN from Figure 2 cannot break the class imbal-
ance, therefore its results on the task are not reported.

  

2D Convolution 
Kernel: 3x3 – Filters: 128

2D Convolution
Kernel: 3x3 – Filters: 64

Max Pool
Kernel: 2x2

Dropout
Probability: 0.25

Flatten

Dense
Units: 32

Dropout
Probability: 0.5

Dense
Unit: # classes

Figure 2. CNN Architecture employed for the classification tasks.

5.3. Ablation Study

This section describes a couple of changes to the
Laguerre-Gauss preprocessing procedure in order to better
understand how each component affects the process of re-
ducing the feature space. Even though the procedure con-
tains more than two steps, the steps tested here are the ones
that are theoretically allowed, since direct modifications of
the filter, or with it, would not make sense.

Tables 4 and 5 show the accuracy and F1 scores after re-
moving the convolution and shift step during preprocessing,
respectively.

5.3.1 Convolution

This step consists of ignoring the convolution of the Fourier
transform of the image with the Fourier transform of the
filter. Instead, the Fourier transform of the image is calcu-
lated and the procedure remains unmodified, but uses this
transformed representation.

From Table 4 it seems that removing this step is actually
good. This could be an effect of the lack of background
noise in this images, where the object to classify is not hid-
den by others. But on Table 5 the performance is degraded
on MLP. Also, note that while training, the model quickly
reaches the reported accuracy and the loss stops decreasing,
meaning that the network has stopped learning and started
over-fitting.

5.3.2 Unshifted Components

Here, once the image is convolved the line profiles are di-
rectly calculated assuming that the center of the image is
the axis’ origin. Basically, the convolution is not rearranged
and the frequency components are disorganized across the
matrix.

From Table 4 it is possible to see that removing this
step greatly degrades geometric shape classification perfor-
mance. On Table 5 the performance is also diminished. The
main differences are reported by the F1 score.

6. Discussion

The introduced methodology can learn a robust classifier
for Aerial Images and Geometric shapes (see Tables 2 and
3). Particularly for the Aerial Images, the model faces many
challenges given the diverse set of characteristics present in
the images.

As shown in [12] the LGSF can avoid noise in the image
by ignoring the low- and high- frequencies. Furthermore,
once the Fourier transform of an image is computed, the
random noise (usually white noise) behaves as a constant in
the Fourier frequency domain [22]. Also as seen in Section
3.2 the transform is linear so the “data transform is the sum
of the signal and noise transforms” [22]. This feature might
give robustness to adversarial attacks, but was not tested in
this paper.

As stated in Section 4, the parameter ω of the LGSF
was fixed to 0.9, as a trade-off between prioritizing high
frequencies (sharper edges) but being conscious of the im-
portance of lower frequencies, specially in images taken at
high-altitudes, where the objects in the surface are difficult
to detect. The selection of this hyper-parameter accord-
ing to the characteristics of each data set (through hyper-
parameter tuning) should return better models. Specifically,
for the Aerial Images, upon inspection of the misclassi-
fied instances (in train, validation and test data sets), it was
seen that most errors occurred on images taken from high-
altitudes, meaning that the classifier is constrained to certain
altitudes.

Additionally, since this methodology extracts features
of the images from the frequency domain it can be ex-
pected that it can generalize to diverse environments, since
it does not need to know its particularities (i.e., background
noise: deserts, ocean, etc.), and instead can look for rele-
vant shapes. In [21] they hypothesize a similar result on
emotion recognition from different languages. Overall, this
will mean a more robust classifier.

Figures 5 and 6 show the average line profile for the
training data. From them it is clear that they differ the most
around the center of the spectrum. Since both data sets were
resized to images of size 64 × 64 the spectral resolution
is truncated. Determining an adequate spectral resolution



Train Validation Test
Model Data Size Accuracy F1 Accuracy F1 Accuracy F1

kNN
Flattened 750.8 MB - - 0.9513 0.94/0.94/0.96 0.9601 0.95/0.95/0.97

LP 23.7 MB - - 0.9832 0.97/0.98/0.99 0.9880 0.98/0.98/0.99

MLP
Flattened 4.4 MB 0.9661 0.95/0.95/0.98 0.9311 0.93/0.90/0.95 0.9066 0.90/0.88/0.94

LP 374.7 kB 0.9770 0.96/0.97/0.98 0.9563 0.94/0.95/0.97 0.9563 0.95/0.95/0.96
CNN Image 15.5 MB 0.9819 0.98/0.97/0.98 0.9550 0.95/0.93/0.97 0.9584 0.96/0.94/0.96

Table 2. Results of Geometric Shape classification. The shapes are a combination of hand-drawn and computer generated with different
sizes. The F1 score is reported for each class in the next order: Circle, Square, Triangle.

Train Validation Test
Model Data Size Accuracy F1 Accuracy F1 Accuracy F1

kNN Flattened 951.2 MB 0.9257 0.93/0.91 0.9286 0.93/0.91 0.9183 0.92/0.90
LP 30.0 MB 0.9030 0.91/0.88 0.8900 0.90/0.86 0.9046 0.9151/0.89

MLP Flattened 4.4 MB 0.5747 0.72/0.0 0.5720 0.72/0.0 0.5730 0.72/0.0
LP 376.4 kB 0.8012 0.82/0.76 0.8116 0.83/0.77 0.7990 0.82/0.76

Table 3. Results of Aerial Images classification. The F1 score is reported for each class in the next order: 0 - No object of interest / 1 -
object of interest.

(higher or lower) means that a better model could be ob-
tained; in the case of Aerial Images, from the average line
profiles, it can be seen that the line profiles could be trun-
cated to obtain an even smaller feature space and still have
differentiating characteristics. This results particularly in-
teresting for classification tasks with many labels and vari-
ance within elements of the same class. For instance, Smith
and Gray [22] say that line profiles differ the most at larger
frequencies, where noise is even smaller. The latter con-
firms that images of higher resolution might return a better
feature space.

Following on the topic of line profiles, their value lies
in the fact that for different classes it is possible to obtain
peaks and valley of varying amplitudes and at different fre-
quencies. Since the synthesized profiles obtained in this
work always lied in the axis, it remains necessary to study
how sampling profiles from other paths within the spectrum
might help to obtain a richer feature space.

Regarding the ablation study, the convolution step turned
out to be relevant for classification of Aerial Images. When
tested on Geometric Shapes, its effect is counterproductive.
This is an important fact, given that it supports the LGSF as
a good edge enhancer (which was not needed on Geometric
Shapes, since they already had their edges clearly defined).
On the other side, the shifting phase turned out to be re-
ally important when constructing the reduced feature space.
This confirms that specific edge directions describe most of
the images and a feature space where every time different
directions are sampled does not provide value.

An application where this methodology can be success-
fully applied is finding regions of interest within large ar-
eas/images. Due to the simple models, inference on parti-
tions of the image will quickly return those places where a

more expensive model should focus, avoiding the costs of
running it over the whole space.

7. Conclusion
This work introduced Laguerre-Gauss Preprocessing. It

was shown that it can be successfully applied to robustly
learn to classify aerial images with simple models. As a
result, the models size footprint is reduced, as well as the
training and inference time. The LGSF enabled edge en-
hancement and reduced the low- and high-frequency noise.
The LGSF distributes homogeneously and smoothly the in-
tensity in the Fourier spectrum due to its isotropic fea-
ture. This resulted in characteristic frequencies that allowed
learning special/relevant shapes within an image. In addi-
tion, The LGSF can enhance any small changes in the image
according to small changes in frequency.

The parameter ω tends to one in order to preserve the
spatial frequency distribution in the image and perform the
bandpass filter component from the LGSF, but it is impor-
tant to analyze and propose a methodology to select the ap-
propriate value depending on each data set.

This feature selection technique achieves models with
a lower complexity (measured in terms of the VC dimen-
sionality) and introduces a tool to develop a robust, quick,
simplified and low-cost solution which can be deployed in
aerial vehicles.

Future work could focus on extending this method for
classification tasks with more categories where the shapes
have high variance between elements of the same class.
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Figure 3. ROC curve for a kNN trained to classify Aerial Images.
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Figure 4. ROC curve for a MLP trained to classify Aerial Images.

Train Validation Test

Model Removed
Step Accuracy F1 Accuracy F1 Accuracy F1

kNN Convolution - - 0.9840 0.97/0.98/0.99 0.9888 0.98/0.98/0.99
Shift - - 0.8400 0.82/0.85/0.84 0.6519 0.70/0.58/0.67

MLP Convolution 0.9966 0.99/0.99/0.99 0.9857 0.98/0.98/0.99 0.9884 0.98/0.98/0.99
Shift 0.5919 0.63/0.33/0.75 0.5780 0.64/0.27/0.73 0.6078 0.70/0.39/0.67

Table 4. Ablation test on Geometric Shapes.

Train Validation Test

Model Removed
Step Accuracy F1 Accuracy F1 Accuracy F1

kNN Convolution 0.9048 0.91/0.88 0.9053 0.91/0.88 0.9120 0.92/0.89
Shift 0.8770 0.89/0.85 0.8806 0.89/0.85 0.8850 0.90/0.86

MLP Convolution 0.7478 0.77/0.72 0.7606 0.78/0.72 0.7490 0.77/0.71
Shift 0.7411 0.78/0.66 0.7520 0.79/0.68 0.7433 0.78/0.67

Table 5. Ablation test on Aerial Images.
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Figure 5. Mean Line Profile Geometric Shapes.
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Figure 6. Mean Line Profile Aerial Images.
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