
Lossless Compression of Deep Neural Networks

Thiago Serra 1 Abhinav Kumar 2 Srikumar Ramalingam 3

Abstract
Deep neural networks have been successful in
many predictive modeling tasks, such as image
and language recognition, where large neural net-
works are often used to obtain good accuracy.
Consequently, it is challenging to deploy these
networks under limited computational resources,
such as in mobile devices. In this work, we
introduce an algorithm that removes units and
layers of a neural network while not changing
the output that is produced, which thus implies
a lossless compression. This algorithm, which
we denote as LEO (Lossless Expressiveness Opti-
mization), relies on Mixed-Integer Linear Pro-
gramming (MILP) to identify Rectifier Linear
Units (ReLUs) with linear behavior over the in-
put domain. By using `1 regularization to induce
such behavior, we can benefit from training over
a larger architecture than we would later use in
the environment where the trained neural network
is deployed.

1Bucknell University, Lewisburg, Pennsylvania, USA
2Michigan State University, East Lansing, Michigan, USA 3The
University of Utah, Salt Lake City, USA. Correspondence to: Thi-
ago Serra <thiago.serra@bucknell.edu>.

Extended abstract for the LXAI Workshop at the 37 th Inter-
national Conference on Machine Learning (ICML 2020). The
manuscript is available at https://arxiv.org/abs/2001.00218. The
final paper will appear in Proceedings of the 17 th International
Conference on the Integration of Constraint Programming, Artifi-
cial Intelligence, and Operations Research (CPAIOR 2020).

Table 1. Compression of 2-hidden-layer rectifier networks trained
on MNIST. Each line summarizes tests on 31 networks. Depending
on how the network is trained, the higher incidence of stable units
allows for more compression while preserving the trained network
accuracy. For example, training with `1 regularization induces
such stability and then inactive units can be removed. Interestingly,
the small amount of regularization that improves accuracy during
training also helps compressing the network later.
Layer `1
width weight Accuracy (%) Compression (%)

25 0.001 95.76 ± 0.05 22 ± 1
25 0.0002 97.24 ± 0.02 8.3 ± 0.7
25 0 96.68 ± 0.03 0 ± 0
50 0.001 96.05 ± 0.04 29.4 ± 0.7
50 0.0002 97.81 ± 0.02 15.1 ± 0.6
50 0 97.62 ± 0.02 0 ± 0
100 0.0005 97.14 ± 0.02 30.8 ± 0.5
100 0.0001 98.14 ± 0.01 14.9 ± 0.4
100 0 98.00 ± 0.01 0 ± 0

Figure 1. Examples of output-preserving neural network compres-
sion obtained with LEO. On the left, two units in white are stably
inactive and three units indexed by set S in darker blue are stably
active, where rank(W 2

S )=2. In such a case, we can remove the
stably inactive units and merge the stably active units to produce
the same input to the next layer using only two units. On the right,
an entire layer is stably active. In such a case, we can fold the layer
by directly connecting the layers before and after it. In both cases,
the red arcs correspond to adjusted network coefficients.


