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1. Introduction
Clustering is one of the most natural ways of summariz-
ing and organizing data. In particular, the main objective
of clustering is to separate data into groups of similar data
points. Although there exists multiple successful approaches
for clustering data with high-level features, clustering high-
dimensional raw data such as image and sound is a hard
task. Techniques based on Deep Learning (DL) have been
very successful in yielding good high-level representations
for such type of data (Bengio et al., 2013; Aljalbout et al.,
2018). Some of the most efficient approaches for producing
representations from unlabeled data are Autoencoder (AE),
Variational Autoencoder (VAE) and Generative Adversar-
ial Networks (GAN). Moreover, those techniques can be
applied in different ways, such as with self-labeling (Asano
et al., 2019), or Deep Clustering (DC) (Nutakki et al., 2019).
This work focuses on DC, that differs from conventional
approaches according to the algorithms structure, network
architectures, loss functions, and optimization methods for
training (Nutakki et al., 2019).

In this work, we investigate the Joint DC, a task that aims
at learning a good representation of the input data as well
as clustering prototypes by minimizing a loss that combines
clustering and reconstruction errors. Our preliminary results
show that an AE combined with state-of-art clustering meth-
ods based on Self-Organizing Map (SOM) with relevance
learning produce a meaningful topology in the latent space
and clustering prototypes that represent well the existing
data categories for MNIST dataset.

2. Research Problem and Motivation
DC approaches treat representation learning and clustering
as a joint task and focus on learning representations that are
clustering-friendly, i.e., that preserve the prior knowledge
of cluster structure. It is typically performed by optimizing
a loss function (Lc), which can be seen as a clustering loss,
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jointly with a regular loss (Ln), such as the reconstruction
loss (Lrec) of an AE (Ji et al., 2017), or the variational loss
of a VAE (Jiang et al., 2016).

In this work, we particularly focus on a family of cluster-
ing algorithms called SOM (Kohonen, 1990). SOM is
a biologically inspired unsupervised learning method that
maps data from a higher-dimensional input space to a lower-
dimensional output space, while preserving the similarities
and the topological relations found between points in the
input space. Each map unit is associated with a prototype
vector from the original data space. State-of-the-art SOM-
based models are suitable for clustering high-level features,
such Braga & Bassani (2019); Bassani & Araujo (2015).

Recent works use the SOM loss, achieving good clustering
results. For instance, Deep Embedded Self-Organizing Map
(DESOM) uses an AE combined with a classical bidimen-
sional SOM grid (Fortuin et al., 2018), and Self Organizing
Map Variational Autoencoder (SOM-VAE) (Forest et al.,
2019), uses a discrete latent space and combines the SOM
loss with the Vector Quantised-Variational AutoEncoder
(VQ-VAE) loss (van den Oord et al., 2017).

3. Technical Contribution
The Deep Clustering Self-Organizing Map with Relevance
Learning (DC-SOMRL) is proposed as a viable option
of SOM-based model that can support batches of samples
during training, and be easily integrated into Deep Neural
Networks (DNN). We also added a neighborhood that works
as a radial basis function with an exponential decay (γ)
according to the level of activation of each node to an input
pattern. It was developed based on some ideas from Bassani
& Araujo (2015) and Braga & Bassani (2018).

In this work, we combined DC-SOMRL with an AE.
The AE can minimize the reconstruction error by ensur-
ing the hidden units capture the most relevant aspects of the
data (Murphy, 2012). The AE network consists of two parts:
an encoder function h = f(x) and a decoder that produces
a reconstruction r = g(h). If the AE converges, it learns to
set g(f(x)) = x̂. The AE learning process is described as
minimizing Equation (1):

Lrec(x, x̂) = ‖x− x̂‖ (1)
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The complete forward pass consists of feeding the encoder
with the input x, and then the latent representation is con-
trolled by a sigmoid function. Finally, it is sent to DC-
SOMRL and the decoder. The DC-SOMRL procedure
consists of calculating the winner’s prototype for the latent
representations. To do so, an activation is computed as a
radial basis function of a weighted distance. All prototypes
with an activation above a defined threshold are used to com-
pute the DC-SOMRL loss. It is expressed by Equation (2),
which tries to minimize the weighted distance between the
encoded feature (h = f(x) = xz) and the winner prototype
(c). Notice that the weights represent the relevance of each
dimension (ω) on each prototype automatically learned by
DC-SOMRL:

LDC-SOMRL(xz) = ω ∗ ‖xz − c‖ (2)

With this information at hand, we combine both loss func-
tions in order to backpropagate the error to the AE. The
following Equation (3) illustrates the total loss that adds
part of the Equation (2) to Equation (1) weighted by α:

LTotal(x, x̂) = Lrec(x, x̂) + αLDC-SOMRL(x) (3)

4. Experiments
The experiments evaluated the results from both quantita-
tive and qualitative perspectives. For the first, two common
metrics were used on MNIST dataset: Normalized Mutual
Information (NMI) and Purity. For the latter, the quality of
the latent representations was explored using the relations
between the encoded features of the dataset and the proto-
types of DC-SOMRL, and the top ten samples closest to
each DC-SOMRL prototype.

The setup was based on Fortuin et al. (2018) to permit one-
to-one comparisons. The models were trained for 1,000
iterations with a batch size of 256. The AE is consistent
with the architecture proposed by Xie et al. (2016). The
features in the latent space pass through a sigmoid function
before being fed as input of ten features to DC-SOMRL.
The maximum number of prototypes is defined to be 64 to
be consistent with the 8x8 grids of previous SOM works.
The alpha parameter varies between 0 and 1, but in this
evaluation, it was fixed at 0.001 to better comparisons.

4.1. Quantitative Analysis

Table 1 shows the clustering quality in terms of NMI and
purity of DC-SOMRL in comparison with DESOM and
SOM-VAE. The results show that the proposed model
achieves competitive results, while reducing the dimension-
ality from 784 (input space) to 10 (latent space). The model
does not outperform DESOM. However, the results are
close, showing a promising path to follow. It is important

Table 1. Evaluation metrics on MNIST dataset

METHOD PUR NMI
SOM-VAE 0.868 0.595
DESOM 0.939 0.657
DC-SOMRL 0.921 0.615

mentioning that the main idea is not necessarily to outper-
form in terms of metric value, but to build a solid represen-
tations which with meaningful topological properties.

4.2. Qualitative Analysis

We analyzed the reconstructed image of each prototype and
its top ten closest samples. In Figure 1, notice that the pro-
totypes shown represent two ways of writing the number 2,
and two ways of writing the number 7, respectively. Then,
we evaluate a plot in t-SNE space (Maaten & Hinton, 2008)
of the datapoints in relation to the cluster prototypes for
the test samples (Figure 2). The edges between prototypes
represent the topological neighborhood found. Notice that
the model was able to create at least one cluster for each
class, and the connections between nodes of different class
regions make sense in a semantic perspective (e.g., the num-
ber 9 shares similarities with 4 and 7). These interesting
results allows to observe characteristics of prototypes found
and features shared by prototypes of different categories.

Figure 1. On the left, a column with the prototypes. On the right,
top ten samples closest to the prototypes.
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Figure 2. t-SNE: MNIST Test Data + DC-SOMRL Prototypes.
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