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Abstract
Scientists working with observational data often
need to know attributes of nodes in social net-
works. When these attributes are partly missing,
collective classification can be used to infer them.
However, factors affecting its performance are not
yet well understood, nor the conditions that bias
the performance against minorities. To this end,
we systematically study how structural properties
of the network and the training sample influence
the performance of collective classification. Our
main finding shows that mean classification per-
formance can empirically and analytically be pre-
dicted by structural properties such as homophily,
fraction of minorities, and edge density. Our re-
sults establish evaluation benchmarks, especially
helpful when no ground-truth is available.

1. Introduction
In many scientific fields, such as social science or web
science, as well as in industry applications, there is a ma-
jor need to have access to the attributes of individuals in
social networks; for instance, to explore the relationships
between socio-demographic attributes of people and their
behavior, or to investigate segregation and information diffu-
sion across different groups of people. In practice, however,
often only partial information about individuals is available
due to API quotas or privacy settings. In this scenario, col-
lective classification (Neville & Jensen, 2000; Getoor &
Taskar, 2007; Macskassy & Provost, 2007) can be used to
infer individual’s attributes using information from their
neighbors and a few seeds (i.e., individuals with known at-
tributes). The advantage of collective classification over tra-
ditional machine learning techniques—which rely only on
node attributes and ignore relationships with other nodes—
is that the former does not require the data to be independent
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and identically distributed, which is important when dealing
with networked data, as the class label of a node may depend
on the class label of its neighbors.

A challenge for inference is that the distribution of indi-
vidual attributes over the network is often uneven, with
coexisting groups of different sizes: for example, one ethnic
group or gender may dominate the other group. Machine
learning methods often struggle with unbalanced data, and
as a result, may misclassify the minority class more often
than the majority class. Many social networks also demon-
strate a property known as homophily, which is the tendency
of individuals to associate with others who are similar to
them (e.g., with respect to gender) (McPherson et al., 2001).

Despite its importance, little is known about the impact of
network structure—in particular homophily and the fraction
of minorities—on the performance of collective classifi-
cation. The variety of network types—as well as many
choices for the graph sampling method, relational model,
and collective inference—make it difficult to choose the
best combination of methods for a particular problem. A
further complication is that ground truth data is not always
available to evaluate results.

Research Questions. In this work we systematically com-
pare different factors that may influence the performance of
collective classification. These factors relate to structural
properties of the network and the training sample involved
in the inference process.

• RQ1: How does network structure (i.e., number of
nodes, edge density, fraction of minorities, homophily)
affect performance of collective classification?

• RQ2: How does the choice of the sampling technique
affect the performance of collective classification and
its parameter estimation?

• RQ3: How does network structure and the choice of
the sampling technique bias inference against the mi-
nority or majority groups?

2. Related Work
(Macskassy & Provost, 2007) evaluated the influence of rela-
tional classifiers (RC) together with collective inference al-
gorithms (CI) and sample size using random node sampling,
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Figure 1. Classification performance on empirical networks: (a,d) university networks, (b) sexual contact network, (c) mutual-follower
developer network, and (e) reciprocal hypher-link network. Properties of the networks are shown as H (homophily) and B (fraction of
minorities). Sample size using random node sampling is shown on the x-axis, and the mean ROCAUC score on the y-axis. Results from
real networks are shown as “empirical” (dark blue), and their synthetic counterparts as “BA-Homophily” (light blue). Overall, results
from synthetic networks follow a similar pattern as the empirical counterpart.

and concluded that the network-only Bayes classifier (nBC)
is almost always significantly and often substantially worse
than other RCs. When samples are small, relaxation label-
ing (RL) is best among all CIs, whereas weighted-voting
(wvRN) and class-distribution (cdRN) are best among all
RCs. When samples are large, all CIs perform similarly well,
and network-only link-based (nLB) is best among all RCs.
More recent work by (Zeno & Neville, 2016) concluded
that as the sample size increases it is better to learn a model
using nBC than with wvRN. While all these contributions
touch upon important points, they have mostly focused on
the performance of RCs and CIs. Besides, their findings are
not comparable since they use different datasets, different
configurations of RC and CI, and different evaluation met-
rics. In our work we focus on the performance and fairness
of nBC and RL by systematically varying some properties
of the network and the training sample.

3. Approach and Methods
We utilize BA-Homophily, a simple model that allows to gen-
erate scale-free undirected networks with tunable homophily
and group size (Karimi et al., 2018). One advantage of this
model is that it generates networks with power-law degree
distributions which have been observed in many large-scale
social networks (Barabási, 2009). More importantly, it only
requires two main input parameters (homophily and the frac-
tion of minorities), and thus the behavior of the model is
analytically tractable (Karimi et al., 2018). The homophily
parameter ranges from 0 to 1, and it allows us to generate
heterophilic networks (0 ≤ H < 0.5), neutral networks
(H = 0.5), and homophilic networks (0.5 < H ≤ 1).

Furthermore, we follow definitions and pseudo-codes from
(Macskassy & Provost, 2007) to implement the network-
only Bayes classifier (nBC) and the relaxation labeling
inference algorithm (RL). We measure classification per-
formance in terms of ROCAUC1, assess the quality of the

1Area under the receiver operating characteristic curve: It mea-
sures how well the classifier can distinguish between classes.
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Figure 2. Network structure vs. classification performance.
Results on “BA-Homophily” networks with N = 2000 nodes and
different levels of: homophily (x-axis), minimum degree (rows),
fraction of minorities (columns), and sample size (colors). Dots
represent mean ROCAUC scores (y-axis) over 50 runs, and error
bars their respective standard deviation. We see that (i) heterophilic
networks H < 0.5 achieve higher ROCAUC than homophilic net-
works H > 0.5, especially when samples are small (red), and (ii)
the denser the network m = 20, the higher the ROCAUC.

model parameters using squared estimation errors (SE), and
compute the overall accuracy equality score (Berk et al.,
2018) to asses the fairness of the classifier with respect to
minority and majority classes.

Contributions. We demonstrate analytically and empiri-
cally that classification performance, estimation error, and
fairness are predictable and mainly depend on homophily,
fraction of minorities, and sample size, see Figures 1 and
2. In particular, we show that: (i) small training samples
are enough for heterophilic networks to achieve high and
fair classification performance, even with imperfect esti-
mates, (ii) when sampling budgets are small, partial crawls
(Avrachenkov et al., 2016) and edge sampling achieve the
most accurate model estimates, and (iii) homophilic net-
works are more prone to fairness issues and low perfor-
mance, especially when samples are small and the fraction
of minorities decreases. Last but not least, we make our
code and data openly available (Espin-Noboa, 2019).
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