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Abstract
We report updates on the development of a com-
putational pipeline for the inference of heteroge-
neous interactions from longitudinal studies, im-
proving on previous work on a pipeline for homo-
geneous interactions. Metagenomics, metatran-
scriptomics, and metabolomics data from iHMP
IBD were used and modeled using Dynamic
Bayesian Networks. The data were interpolated
and temporally aligned to account for differential
rates of change, missing data, and irregular sam-
pling. A metabolic framework is imposed, and
the inferred validations are being validated both
computationally and experimentally.

1. Introduction and Motivation
Microbes living inside the human body interact with each
other and their host through different metabolites, suggest-
ing a complex “social network” (Ackerman, 2012). Micro-
biomes are dynamic in nature, which makes longitudinal
data necessary to understand their behavior (Gerber, 2014).
Moreover, the internal clocks of different individuals and
factors such as age or gender influence the metabolic speed
of many biological processes. Thus, to analyze time-series
data across individuals, we need to compensate for it and
also deal with non-uniform sampling, noisy and missing
data. Finally, the reduction in the price of sequencing tech-
niques is now making it possible to generate multi-omics
data (e.g., metatranscriptomics, metabolomics, and metage-
nomics), thus allowing us to link many pieces of the puzzle.
An in-depth knowledge of this network would facilitate the
development of new and effective drugs and treatments. For
this task, Dynamic Bayesian Networks (DBNs) will be used
to infer temporal biological interactions. DBNs are prob-
abilistic graphical models consisting of a directed acyclic
graph where at each time slice the nodes correspond to ran-
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dom variables of interest and directed edges correspond to
their conditional dependencies. They are ideally suited to
model heterogeneous dynamic systems and infer temporal
interactions between their constituents.

2. Methods
Figure 1 illustrates the computational pipeline developed
in (Lugo-Martinez et al., 2019), where the example uses
the time series of abundance values for the microbial taxon
Gammaproteobacteria from five samples of an infant gut
data set sampled at multiple time points (La Rosa et al.,
2014). Figure 1 shows: a) Raw relative abundance values for
each sample; b) Cubic B-spline curves for each time series
following previous work (Bar-Joseph et al., 2012), which
enable principled estimation of unobserved time points and
interpolation at uniform intervals. c) Temporal alignment of
each individual sample against a selected reference sample,
which takes care of different metabolic rates and time lags;
d) Removing samples with higher alignment error, since not
every individual may follow the same process; e) Learning a
DBN structure and parameters, and inferring biological rela-
tionships in the learned DBN; and f) comparing the original
and predicted relative abundance across four different taxa.
The authors of (Lugo-Martinez et al., 2019) modified the
Matlab package CGBayesNet (McGeachie et al., 2014) to
allow for intra-edges in the structure learning (connections
within the same time point) and implemented balancing
penalty functions such as Akaike Information Criterion and
Bayesian Information Criterion (Penny, 2012). Also, dy-
namic restrictions encoded as an adjacency matrix establish
the edge types allowed during structure learning were added.
Within the same time slice, clinical variables can influence
microbial taxon abundance, which in turn can influence the
expression of a gene in its genome, which in turn can be
involved in metabolic pathways to impact the metabolites
produced, which in turn can be consumed by other taxa in
the next time slice, impacting their abundance.

In the project reported here, the tools from (Lugo-Martinez
et al., 2019) were modified for multi-omic data and are
undergoing the process of evaluation and testing. For this
project, we are using the data generated by the Integrative
Human Microbiome Project, which followed 132 individu-
als with Inflammatory Bowel Disease over a period of one
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a) Raw input data
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b) B-spline interpolation (unaligned)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 A

b
u

n
d

a
n

c
e

Age (day of life)

d) Post-alignment filtering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 A

b
u

n
d

a
n

c
e

Age (day of life)

c) Temporal alignment f) Microbial composition prediction
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e) Dynamic Bayesian network modeling
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Figure 1. Computational pipeline developed.

year (Lloyd-Price et al., 2019). Cross validation prediction
error will be reported in addition to the error of a continuous
prediction to assess how fast the predictions deviate from the
ground truth. The inferred interactions are being validated
computationally, experimentally, and using literature-based
methods. In-house scripts will query known databases and
assess the biological relevance of a connection from a taxon
to a metabolite or a gene to a metabolite. Then the inter-
actions with the highest bootstrap confidence and overall
importance will be selected and tested experimentally.

3. Results and Discussion
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Figure 2. Heterogeneous DBN for iHMP IBD data set

The intra-edges and penalty modifications of CGBayesNet
were previously tested in (Lugo-Martinez et al., 2019) for
interactions among taxa and compared against the state of
the art methods, showing an increase in prediction accuracy
among all data sets tested. Similar validations are underway
for this project.

Figure 2 shows a bootstrapped DBN incorporating a sub-
set of metabolites, genes and taxa and the interactions be-
tween them. The shape of a node represents its type, while
edge color represents the sign of the regression coefficient
between the nodes (green is positive and red is negative).
Preliminary validation using a larger subset of nodes was
executed using the tool MIMOSA (Noecker et al., 2016) to
calculate the metabolic potential of each taxon, and KEGG
genome libraries to validate taxa-metabolite and taxa-gene
interactions respectively. A significant (based on a Poisson-
Binomial distribution) number of the edges predicted by
the DBN were present in the validation tools and databases
used.

The work reported in this abstract represents novel and
valuable research on an integrated analysis of multiomic
longitudinal data.
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