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Abstract
We evaluate chemical patent word embeddings
against known biomedical embeddings and show
that they outperform the latter extrinsically and
intrinsically. We also show that using contextu-
alized embeddings can induce predictive models
of reasonable performance for this domain over
a relatively small gold standard.

1. Introduction
The chemical industry undoubtedly depends on the discov-
ery of new chemical compounds. However, new chemical
compounds are often disclosed first in patent documents
(Senger et al., 2015), and only months or years later make it
to scientific publications. Thus, most chemical compounds
are only immediately available in patent documents (Bre-
gonje, 2005). As the number of new chemical patent ap-
plications has been drastically increasing (Muresan et al.,
2011), it is now crucial to develop natural language pro-
cessing (NLP) approaches to automatically extract infor-
mation from chemical patents (Akhondi et al., 2019).

A key tool in this endeavour are word embeddings (Baroni
et al., 2014). Embeddings are crucial to derive word, sen-
tence and text-level features in state-of-the-art neural mod-
els such as neural named entity recognition (NER) mod-
els. Large scale Word2Vec and contextualized embeddings
have been developed for e.g., the biomedical (Pyysalo
et al., 2013; Jin et al., 2019) and drug (Segura-Bedmar
et al., 2015) domains. Smaller embeddings for analytic
chemistry such as Mat2Vec (Tshitoyan et al., 2019) (cov-
ering materials science) have also been proposed. All such
embeddings were trained on scientific papers (PubMed cor-
pus). More recently, Zhai et al. (2019) learnt and success-
fully applied to chemical named entity recognition large
scale Word2Vec and contextualized ELMo embeddings
learnt over chemistry patents (a 1 billion word corpus), the
so-called CheMU embeddings.
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Table 1: Our training and test sets come from the SCAI
corpus; the validation set from the Biosemantics corpus.

Split Entities Tokens

Train 731 IUPAC, 212 Modifier, 73 Partiupac 33,457
Validation 240 IUPAC 4,654
Test 48 IUPAC, 2 Modifier 28,240

In this paper we address the issue of evaluating the qual-
ity of these chemistry patent-specific embeddings against
its predecessors. Two methods are usual in these kind of
comparisons (Schnabel et al., 2015; Wang et al., 2018). On
the one hand, extrinsic evaluation, in which the impact of
each embedding on a prediction task – chemical NER in
this paper – is reported. On the other hand, intrinsic eval-
uation, where we qualitatively analyze the quality of the
distributed (semantic) representations each embedding as-
signs to chemical words. To this end it is customary to com-
pare the top 10 most similar terms returned by each em-
bedding to a fixed chemical word – “ibuprofen”, a known
anti-inflammatory drug, in this paper – or similarity query.
We show that chemical patent embeddings outperform their
predecessors both extrinsically and intrinsically.

2. Experiments
Data We use for our experiments a small gold standard
sampled from two known chemical NER patent corpora,
the SCAI corpus (Klinger et al., 2008) and the Bioseman-
tics corpus (Akhondi et al., 2014). The SCAI corpus fo-
cuses on chemicals written using the UIPAC name stan-
dard1. In addition, we sampled IUPAC-annotated portions
of the Biosemantics corpus (that covers a much wider va-
riety of chemical entity types) to use as validation set. See
Table 1.

We observed large vocabulary overlaps among the
Word2Vec embeddings, and with the test set (3,521 words),
see Figure 1. We exploit this fact to qualitatively compare
the ELMo and Word2Vec embeddings over the test set vo-
cabulary during the intrinsic evaluation.

1See: https://iupac.org
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Figure 1: Vocabulary overlaps among Word2Vec embed-
dings and test corpus. Mat2Vec, PubMed, drug and
CheMU embeddings share in total 35,769 words.
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Figure 2: Architecture of the (neural) NER system used.

Extrinsic Evaluation For NER – viz., extrinsic evalua-
tion – we use simplified variants of Lample et al. (2016)’s
model by using GRU instead of LSTM (stacked) layers, to
reduce parameters and prevent overfitting given the small
size of our corpus. This is sufficient as we wanted to (a)
test if the embeddings could induce reasonable (though
not state of the art) performance, and (b) test if different
embeddings give rise to different performances. We en-
coded words using the pre-trained chemical embeddings
and a trainable character-level GRU encoder. See Fig-
ure 2. The models were trained for 50 epochs with early
stopping (patience of 5 epochs), 80-dimensional bidirec-
tional GRU character encodings with 0.25 dropout, and
300-dimensional bi-directional GRU token encoder with
0.5 dropout. We used a batch size of 16. As training al-
gorithm, Adam was used, with a learning or decay rate of
0.01 and L2-regularization. We used AllenNLP as our main

Table 2: Overview of the embeddings studied in this paper.

Embedding Words Dimensions

Mat2Vec W2V 529,686 200
PubMed W2V 2,351,706 200

Drug W2V 553,195 420
CheMU W2V 1,252,586 200

PubMed ELMo — 1,204
CheMU ELMo — 1,204

Table 3: Impact of the different chemical embeddings on
chemical NER (sorted by F1 score).

Word Embedding F1 ∆ (F1)

Mat2Vec W2V 26.89% —
PubMed W2V 27.23% + 0.3%
Drug W2V 48.48% +21.3%
CheMU W2V 53.24% + 4.8%
PubMed ELMo 70.15% +16.9%
CheMU ELMo 72.41% + 2.3%

implementation2. The models were trained on a Tesla T4
GPU with 16GB of GPU RAM.

As Table 3 shows, using large the scale PubMed Word2Vec
embeddings increases only marginally F1 score w.r.t.
Mat2Vec (baseline model). They are both beaten by a wide
margin by the drug-specific Word2Vec embeddings. Using
patent-specific chemical Word2Vec embeddings also yields
the best F1 score for Word2Vec embeddings. The best re-
sults are obtained with the ELMo embeddings, which out-
perform the Word2Vec embeddings again by a wide mar-
gin, and interestingly allow the model to achieve a reason-
able F1 score of 72,41%. It is also interesting to observe
that PubMed ELMo embeddings contain sufficient domain
knowledge as to reach a close (and also reasonable) F1
score of 70.15%.

Intrinsic Evaluation For qualitative or intrinsic evalua-
tion, we adopted the following strategy to generate com-
parable embeddings. We restricted the vocabulary of
Word2Vec embeddings to the vocabulary of our test cor-
pus (we excluded stop and function words). To compare
these restricted Word2Vec embeddings to the ELMo em-
beddings, we computed an ELMo embedding for each oc-
currence of a test corpus content word, and then averaged
all such embeddings to derive ad hoc single corpus-level
Word2Vec embeddings. While such approach potentially
discards contextual information, it can still preserve syn-
tactic and semantic word type information, given that con-
textualised embeddings tend to assign similar embeddings

2https://allennlp.org/
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Table 4: Top 10 similarity lists (“ibuprofen” query).

CheMU PubMed CheMU PubMed Drug Mat2Vec
ELMo ELMo W2V W2V W2V W2V

tacrine atropine aspirin aspirin pronounced drug
ondansetron ondansetron clopidogrel ondansetron ultrastructure drugs

aspirin sulfamethoxazole prednisolone clopidogrel mimics aspirin
clopidogrel aspirin azathioprine propranolol surgical sulfamethoxazole

dipyridamole tacrine atropine placebo favorable propranolol
atropine trimethoprim nifedipine tacrine intestine trimethoprim

prednisolone propranolol sulfamethoxazole nifedipine trained norfloxacin
propranolol prednisolone dipyridamole prednisolone extinct estradiol

trimethoprim clopidogrel propranolol mg slightly antibiotics
nifedipine papaverine papaverine topical combination nifedipine

Table 5: Overlap of similarity lists (“ibuprofen” query).

PubMed Drug Mat2Vec CheMU PubMed
W2V W2V W2V ELMo ELMo

W2V CheMU 0.33 0.25 0.25 0.43 0.54
W2V PubMed — 0.25 0.18 0.43 0.54
W2V Drug — — 0.18 0.25 0.18
W2V Mat2Vec — — — 0.11 0.33
ELMo CheMU — — — — 0.54

to words that assume similar grammatical and semantic
roles within a sentence. The dimensionality of the embed-
dings was also standardized, by reducing, using singular
value decomposition (SVD), to 200 dimensions the 420-,
and 1,024-dimensional embeddings. We carried out three
analysis.

Similarity analysis. We chose a drug entity, “ibupro-
fen”, mentioned in the test corpus and retrieved its top-
most 10 most similar words using cosine – sim(w,w′) =
(~w ∗ ~w′)/||~w · ~w′|| – similarity. Ideally, since ibuprofen is
a drug, what we expect to see in such similarity lists are
names of drugs or chemical compounds.

The results obtained align – with some caveats – with
the results observed over the NER model. As Table 4
shows, chemical patent embeddings produce better rank-
ings than their more generic or non-patent specific coun-
terparts. Furthermore, ELMo embeddings again show bet-
ter results. Mat2Vec, Drug and PubMed word embeddings
return common nouns (“drugs”), abbreviations (“mg”), ad-
jectives (”topical”) or verbs (“mimics”), whereas chemi-
cal patent Word2Vec and ELMo embeddings return only
drugs or chemicals. Interestingly as well, they return as
their topmost most similar term names of substances (“as-
pirin”, “tacrine”, “atropine”) with somewhat similar anti-
inflammatory properties.
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Figure 3: Embedding correlation (test corpus vocabulary).

Agreement analysis. These trends are largely confirmed
when we check how much these lists semantically align.
As chemical terms tend to be ambiguous, we used Drug-
Bank3 to normalise the terms w into their InChI i(w) chem-
ical identifiers4. Finally, we measured the set similarity –
sim(W,W ′) = |i(W )∩i(W )′|/|i(W )∪i(W )′| – of the en-
suing normalised lists to measure how much the different
embeddings “agree” on their understanding of “ibuprofen”.

As Table 5 shows, chemical patent W2V and ELMo em-
beddings substantially align (0.43 and 0.54 set similarity
resp.). On the other hand, the drug and Mat2Vec em-
beddings do not seem to align well to any other embed-
ding. Interestingly, PubMed Word2Vec embeddings ex-

3DrugBank is a database of chemical substances, see:
https://www.drugbank.ca

4An InChI identifier defines a unique representation of a
molecule, see: https://www.inchi-trust.org.
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hibit a higher than expected alignment with chemical patent
embeddings.

Correlation analysis. Finally, we measured the degree of
correlation between the embeddings. As Figure 3 shows,
both ELMo embeddings correlate very highly (0.91)5.
Chemical patent and PubMed Word2Vec embeddings mod-
erately correlate with all embeddings, whereas Mat2Vec
and drug embeddings give rise to lower correlation scores.

3. Conclusions
We have studied the quality of embeddings trained over
chemical patents against those of embeddings of close
biomedical domains. Our experiments show that patent
specific embeddings outperform extrinsically other embed-
dings by giving rise to better F1 scores in chemical NER
(72.41% on our test corpus). Correlation and similarity
analysis indicate that they also outperform them intrinsi-
cally, and provide a better understanding of the chemistry
domain. They also show that contextualized (ELMo) em-
beddings yield globally better results, and that generic but
large scale PubMed ELMo embeddings (that cover the full
life sciences domain) yield reasonable results for the chem-
istry domain.
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