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Abstract
We propose and analyze an instantiation of the
exponential mechanism for the release of private
statistics. We establish the first ever connection
between the exponential mechanism and smooth
sensitivity. We also carry out extensive empirical
evaluations of the exponential mechanism against
other methods, showing improvements of up to
10x in quality.

1. Introduction
Differential privacy (Dwork, 2006) is a very well studied
framework for protecting information about individuals in
a database. In this paper we are concerned with design-
ing differentially private methods for releasing aggregated
statistics over a dataset. Differential privacy can be achieved
by perturbing the outcome of a computation. This creates
a tension between privacy and utility. On the one hand, a
large perturbation will provide more privacy for individuals,
on the other hand, perturbing an statistic could degrade in-
formation. We propose an instantiation of the well known
exponential mechanism and show a previously unknown
connection with the smooth sensitivity of a dataset. Our
bounds provide the first exponentilally decaying error with
variance scaled by the smooth sensitivity. The results of our
empirical comparisons also demonstrate that the exponential
mechanism is a much better algorithm for releasing private
medians than the previous state-of-the-art.

2. Main results
In this section we present some common concepts of differ-
ential privacy. We will denote by S a universe of datasets. A
dataset S ∈ S is a collection of information about individ-
uals. We assume that each individual has contributed one
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value to S.

Definition 1. Datasets S,S ′ ∈ S are neighbors if S can be
obtained from S ′ by adding or removing a single element.

We denote the neighbors of a dataset S by N (S).

Definition 2. LetM denote a (possibly randomized) func-
tion mapping a dataset S to an output in [a, b]. We sayM is
an (ε, δ)-differentially-private mechanism if, for any two
neighboring datasets S and S ′, and any set of outcomes
A ⊆ [a, b], it holds that:

Pr(M(S) ∈ A) ≤ eε Pr(M(S ′) ∈ A) + δ. (1)

Given some target statistic of a dataset, T : S → [a, b]
(e.g., median, mode), one common mechanismM that is
often used to release a differentially-private version of T is
M(S) = T (S) + noise. The exact distribution is scaled to
match the sensitivity of T .

Definition 3. Given a function T : S→ [a, b] and a dataset
S ∈ S, the local sensitivity of T at S is:

LS(T,S) = max
S′∈N (S)

|T (S)− T (S ′)|.

This quantity captures how much T can change if S is
replaced with one if its neighbors S ′. (Throughout the paper
we will drop the dependency on T and S when it can be
understood from context.) The global sensitivity of T builds
on the definition of local sensitivity.

Definition 4. Given a function T : S→ [a, b], the (global)
sensitivity of T is:

GS(T ) = max
S∈S

LS(T,S).

Adding noise to T with variance proportional to GS(T ) is
one way of constructing a mechanismM that is differen-
tially private. For example, the following mechanism is
well-known in differential privacy.

Proposition 1 (Laplace mechanism). Let T be a function
with sensitivity GS(T ). Then the mechanism M that re-
leasesM(S) = T (S) + GS(T )

ε Z, where Z ∼ Lap(0, 1), is
(ε, 0)-differentially private.
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While the Laplace mechanism provides us with a simple way
of releasing statistics, in general the amount of noise added
might be more than is strictly necessary. This is because
GS(T ) is calculated using the worst possible scenario; it
is a max over all possible datasets. It might seem like
an easy fix is to simply add noise proportional to LS(S).
However, this is not differentially-private, as LS(S) is itself
a sensitive quantity; see Section 2.1 of Nissim et al. (2007)
for a detailed example. To bridge the gap between LS and
GS, Nissim et al. (2007) introduced the notion of smooth
sensitivity, which depends on the distance between datasets.

Definition 5. Datasets S,S ′ are at distance k, denoted
d(S,S ′) = k, if there exists a sequence S = S0, . . . ,Sk =
S ′ such that Si ∈ N (Si−1) and no sequence satisfying
these properties has length less than k.

Definition 6. Given a function T : S→ [a, b], β > 0 and a
dataset S ∈ S, the β-smooth sensitivity of T at S is:

SSβ(T,S) = max
k≥0

max
S′ : d(S,S′)=k

e−βkLS(T,S ′).

One important property of smooth sensitivity is that for
β > 0:

LS(T,S) ≤ SSβ(T,S) ≤ GS(T ). (2)

The other crucial property of SS is:

Proposition 2 (Nissim et al. (2007)). Fix some ε, δ > 0.
Let α = ε

2 and β = ε
2 log 2

δ′
, where δ′ = 2δ

(eε/2+1)
. Then

the mechanism that returns T (S) +
SSβ(T,S)

α Z, where Z ∼
Lap(0, 1), is (ε, δ)-differentially private.

The above mechanism or small variants of it (Bun & Steinke,
2019) is the state of the art alogirhtm for guaranteeing ε, δ-
DP in tasks such as median calculations.

We now turn our attention to another popular mechanism
for releasing differentially private information and the main
focus of this paper: the exponential mechanism. This mech-
anism defines a distribution using a utility function.

Definition 7. (McSherry & Talwar, 2007, Definition 2)
Given a utility function u : [a, b]× S→ R, the exponential
mechanism outputs x ∈ [a, b] with probability proportional

to exp
(
εu(x,S)

2∆u

)
, where ∆u is the sensitivity of u:

∆u = max
S∈S

max
S′∈N (S)

max
x∈[a,b]

|u(x,S)− u(x,S ′)|.

We introduce our utility function to be used with the expo-
nential mechanism.

From the example above, it is clear that a good utility func-
tion is one that assigns low value to points far away from
the true statistic value, T (S), yet has very low sensitivity.
We will now define a dataset-based utility function family

(Duff ) that can achieve this for datasets where the smooth
sensitivity of the statistic function T (Definition 6) is small.

Definition 8. For dataset S and statistic T , Duff is:

ud(x,S) = − min
S′ : T (S′)=x

d(S,S ′).

This utility function considers all datasets that have statistic
value x, and finds one that is closest to the actual dataset
S. Functiond then measures how difficult it is to go from
T (S) to x, and so its negation is the utility of output x for
the dataset S. One of the important features of Duff is that
the sensitivity of this function is always 1.

Theorem 1. Let x ∈ [a, b] denote the output of the expo-
nential mechanism with utility function ud. Let λ denote
the Lebesgue measure and Ht = {x | ud(x,S) ≥ −t}.
Assume λ(Ht) ≥ Ct for some constant C > 0. Let
βexp = ε

4W( ε(b−a)Cδ )
, where W is the main branch of the

Lambert function1. Then with probability at least 1− δ:

|x− T (S)| < 4(e− 1)
SSβexp
ε

W

(
ε(b− a)

Cδ

)
. (3)

Experiments. In this section we provide an empirical
demonstration of the practical advantages of Duff for the
task of computing medians. For comparison, we test the
smooth sensitivity mechanism, SS, of Nissim et al. (2007).
As described in Section 2, this mechanism has several vari-
ants, and we test three of them:

• SSε: (ε, 0)-differential privacy method of Nissim et al.
(2007), with γ set to 2 (yielding the Cauchy distribu-
tion), and

• SSε,δ: (ε, δ)-differential privacy method of Proposi-
tion 2, with the standard “reasonable” value of δ =
1/|S|, as well as the larger, non-private value δ = 0.9.

The results of our experiments can be found in Table 1 where
we clearly demonstrate that our utility function yields the
best results. A more extensive evaluation can be found in
the supplementary material.

Mechanism ε
0.5 1.0 2.0

SS, δ = 0 64.3 (±17.4) 22.6(±10.8) 7.9 (±5.3)
SS, δ = 0.001 14.8 (±2.5) 4.0 (±0.8) 1.2 (±0.3)

SS, δ = 0.9 2.8 (±1.0) 1.1 (±0.7) 0.4 (±0.2)
Duff 0.6 (±0.1) 0.3 (±0.1) 0.2 (±0.1)

Table 1. Average |T (S) −M(S)| × 100 for data from N(0, 1).
Standard deviation across datasets is given in parentheses.

1The Lambert function is the inverse of the function x 7→ xex
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