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1 Introduction
Sum-Product Networks (SPN) are deep probabilistic models that have exhibited state-of-the-art
performance in several machine learning tasks [1, 2, 3, 4, 5, 6, 7, 8]. As with many other probabilistic
models, performing Maximum-A-Posteriori (MAP) inference is NP-hard in SPNs [9, 10]. A notable
exception is selective SPNs [11, 9], that allows MAP inference in linear time. Due to the high number
of parameters, SPNs learned from data can produce unreliable and overconfident inference. This
effect can be partially detected by performing a Sensitivity Analysis (SA) of the model predictions to
changes in the parameters [12]. In this work, we develop efficient algorithms for global quantitative
analysis of MAP inference in selective SPNs. In particular, we devise a polynomial-time procedure to
decide whether a given MAP configuration is robust with respect to changes in the model parameters.
Experiments with real-world datasets show that this approach can discriminate easy- and hard-to-
classify instances, often more accurately than criteria based on the probabilities induced by the model.

2 MAP Inference in Sum-Product Networks
An SPN S is a rooted weighted acyclic directed graph with indicator variables as leaves, and sum
and product as internal nodes. We assume that SPN are complete, decomposable and normalized
[1]. To ensure linear-time MAP inference, we also assume that SPNs are selective [11] (i.e., that
at most one child sub-network of any sum node evaluates to nonzero at any realization). For
example, the evaluation of the selective SPN in Figure 1(a) at X0 = 0, X1 = 0 and X2 = 1 is
S(0, 0, 1) = 0.4(0× 0.3× 0.6) + 0.6(0.8× 0.9× 1) = 0.432.
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Figure 1: (a) Selective SPN. (b) CSPNs obtained by 0.1-contamination of the SPN in (a).

An SPN S induces a probability measure PS over the domain of its scope. Thus, given n SPN S with
scope X,E and evidence e ∈ val(E), we define the set of Maximum-A-Posteriori (MAP) inference
instantiations as:

x∗ ∈ arg max
x∈val(X)

P(x|e) = arg max
x∈val(X)

S(x, e) . (1)

The problem is solvable in linear in the size of the network for selective SPNs by the simple Max-
Product algorithm, that consists in replacing sum operations with maximizations and then evaluating
the corresponding Max-Product network [11, 9]. The corresponding MAP instantiation is obtained
by backtracking the solutions of the maximizations from the root toward the leaves. The highlighted
subnetwork in Figure 1(a) contains the arcs selected by Max-Product.



3 Global Sensitivity Analysis of MAP Inferences in SPNs
In order to investigate the sensitivity of an inference w.r.t.] perturbations in the model parameters, we
consider a set of SPNs {Sw : w ∈ C}, where each Sw is parameterized by weights w and share the
same network structure. We also assume that C is given by the Cartesian product of sets Ci, one for
each sum node i. Two common approaches to obtaining Ci is ε-contamination:

Ci = {(1− ε)wi + εv : vj ≥ 0,
∑
j

vj = 1} , (2)

where ε ∈ (0, 1), wi are the weights associated to sum node i and j ranges over the children of i, and
the Imprecise Dirichlet Model (IDM) [13]:

Ci = {wi : wij =
Nij + s · vi
s+

∑
j Nij

, vj ≥ 0,
∑
j

vj = 1} , (3)

where Nij denote the number of times that the edge i→ j is nonzero over the dataset, and s is the
prior strength s of a Multinomial-Dirichlet model.

In this work, we perform global SA by verifying whether a MAP inference x∗ is the single maximizer
of each SPN in a set {Sw : w ∈ C} given evidence e, that is, whether:

max
x 6=x∗

max
w∈C

(
Sw(x, e)

Sw(x∗, e)

)
< 1 . (4)

The following algorithm computes the left-hand side of the inequality below:

V i =



1 if i is consistent,
0 if i is inconsistent,∏
j

V j if i is a product node,

max

{
max

j∈ch(i),j 6=k

(
max
wi∈Ci

wij max
x

Sjwj
(x,e)

wikS
k
wk

(x∗,e)

)
, V k

}
if i is a sum node,

(5)

where k is the active child of i for S at MAP configuration and the evidence (x∗, e).

4 Experiments and Results
We perform SA of MAP inferences on 8 benchmark multilabel classification domains. We assess
the ability to distinguish between reliable and unreliable classifications by measuring both exact
match (i.e., whether all labels are correct) and accuracy (which rewards relevant predictions while
discounting for irrelevant predictions), on instances deemed robust or non-robust by each method.
We compare our approach against a baseline procedure that considers a classification robust if the
difference between the most probable and the second most probable configurations exceeds a given
threshold p. We select the best values ε∗, s∗ and p∗ for resp. ε-contamination, IDM and difference of
probability criteria using a validation dataset, an then perform a SA for each multilabel prediction in
the test dataset. The results are in the table below.

Dataset Accuracy Exact Match
Robust ¬Robust ∆Acc Robust ¬Robust ∆EM

Arts
ε∗ 0.88 0.196 0.634 0.833 0.143 0.69
s∗ 0.107 0.351 -0.244 0.089 0.247 -0.158
p∗ 0.81 0.159 0.651 0.75 0.107 0.643

Business
ε∗ 0.751 0.582 0.169 0.617 0.598 0.019
s∗ 0.781 0.641 0.14 0.642 0.469 0.173
p∗ 0.762 0.581 0.181 0.62 0.392 0.228

Emotions
ε∗ 0.595 0.41 0.185 0.238 0.163 0.075
s∗ 0.686 0.413 0.273 0.308 0.16 0.148
p∗ 0.574 0.391 0.183 0.176 0.176 0

Flags
ε∗ 0.917 0.468 0.449 0.5 0.118 0.382
s∗ 0.917 0.468 0.449 0.5 0.1 0.4
p∗ 0.917 0.468 0.449 0.5 0.118 0.382

Dataset Accuracy Exact Match
Robust ¬Robust ∆Acc Robust ¬Robust ∆EM

Health
ε∗ 0.667 0.557 0.11 0.5 0.416 0.084
s∗ 0.637 0.482 0.155 0.537 0.304 0.233
p∗ 0.655 0.552 0.103 0.552 0.409 0.143

Human
ε∗ 0.203 - - 0.146 - -
s∗ 0.203 - - 0.146 - -
p∗ 0.211 0.198 0.013 0.155 0.14 0.015

Plant
ε∗ 0.331 0.217 0.114 0.324 0.213 0.111
s∗ 0.367 0.162 0.205 0.362 0.157 0.205
p∗ 0.345 0.212 0.132 0.338 0.208 0.13

Scene
ε∗ 0.857 0.277 0.58 0.857 0.212 0.645
s∗ 0.929 0.293 0.636 0.929 0.293 0.636
p∗ 0.923 0.276 0.647 0.923 0.211 0.712

One sees that the SA obtained with IDM achieve the highest accuracy and exact math in 5 of the 8
domains, followed by the ε-contamination (3 out of 8). Probability difference outperforms the other
methods w.r.t. accuracy only for Human, where the our methods consider all instances robust. Yet
the difference in accuracy (or exact match scores) for robust and non-robust is very small, showing
that the two sets perform indeed very similar (but perhaps it would be more sensible to classify all
instances as non-robust). The IDM-based SA perform particularly poorly in the Arts domain, where
the accuracy of the robust portion is significantly inferior to the accuracy in the non-robust portion.
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