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Abstract

Anatomical structures and tissues are often hard to be segmented in medical images due to their poorly defined
boundaries, i.e., low contrast in relation to other nearby false boundaries. The specification of the boundary polarity
can help alleviate a part of this problem. In this work, we discuss how to incorporate this property in the relative fuzzy
connectedness (RFC) framework. We include a theoretical proof of the optimality of the new algorithm, named
oriented relative fuzzy connectedness (ORFC), in terms of an oriented energy function subject to the seed constraints,
and show its usage to devise powerful hybrid image segmentation methods. The methods are evaluated using
medical images of MRI and CT of the human brain and thoracic studies.

Keywords: Relative fuzzy connectedness; Image foresting transform; Graph cut segmentation; Graph search
algorithms

1 Introduction
Manipulating large amounts of data efficiently with high
performance is today a complex task investigated by var-
ious scientific communities, as well by private sector
corporations and government entities. Within this con-
text, computational methods that make use of graphs as
a basic element of study have played a key role in get-
ting innovative solutions in various fields of knowledge, in
particular in problem areas of computer vision and infor-
mation visualization. Recent examples of applications that
employ graph analysis in their processing pipelines are
easily found in the literature such as: segmentation and
classification of images via large-scale graphs [1,2], rear-
rangement and removal of overlaps in visual layouts,
visualization and high-dimensional data clustering [3,4],
among others. Thus, the modern theory of graphs is seen
today as an indispensable tool to explore, analyze, and
process large volumes of information, especially when
it comes to digital images and high-dimensional data
visualization, in view of its strong theoretical and mathe-
matical support [5].
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In this work, we explore graphs by modeling neigh-
borhood relationships of picture elements from digital
images for the purposes of image segmentation, such
as to extract an object from a background, by assign-
ing different labels to its picture elements. This labelling
process is useful for many applications, such as medical
and biological image analysis and digital matting, being
a well-pursued topic in image processing and computer
vision.
One important class of graph-based image segmenta-

tion methods comprises interactive seed-based methods,
where the user provides a partial labelling of the image by
placing hard region-based constraints (known as seeds).
After that, the seed’s labels are propagated to all unla-
beled regions by following some optimum criterion, such
that a complete labeled image is constructed. This class
encloses many of the most prominent methods for general
purpose segmentation, which are usually easier to extend
to multi-dimensional images, including frameworks, such
as watershed from markers [6,7], random walks [8], fuzzy
connectedness [9,10], graph cuts (GC) [11], distance
cut [12], image foresting transform [13], and grow cut [14].
The study of the relations among different frameworks,
including theoretical and empirical comparisons, has a

© 2015 Bejar and Miranda. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=s13640-015-0067-4-x&domain=pdf
mailto: pmiranda@vision.ime.usp.br
http://creativecommons.org/licenses/by/4.0


Bejar and Miranda EURASIP Journal on Image and Video Processing  (2015) 2015:21 Page 2 of 15

vast literature [15-19], which allowed many algorithms to
be described in a unified manner according to a com-
mon framework, which we refer to as generalized GC
(GGC) [18,20]. Within this framework, in the discrete
labelling case, there are two important classes of energy
formulations, the ε1- and ε∞-minimization problems (and
so, the associated algorithms), as discussed in [20].
In this work, we are interested in fast seed-based

methods to efficiently deal with large amounts of data
but which must also be versatile enough to support
the inclusion of high-level, soft constraints. A soft con-
straint imposes a penalty on certain labelling assignments
rather than prohibiting them. The penalty values allow
the customization of the segmentation to different objects
according to their expected high-level features (shape con-
straints, boundary polarity), which can be learned from a
training dataset.
The most time-efficient seed-based approaches of the

GGC framework are the ones that fall within the ε∞-
minimization problem, which have linear time imple-
mentations O(N) with respect to the image size N [17],
while the run time for the ε1-minimization problem is
O(N2.5) for sparse graphs [21]. Recently, some meth-
ods from the ε∞-minimization family were extended to
support the boundary polarity constraint, by exploring
directed weighted graphs, leading to the method named
oriented image foresting transform (OIFT) [22,23]. While
the introduction of combinatorial graphs with directed
edges on other frameworks increases considerably the
complexity of the problem [24], the OIFT still runs
in linear time. The boundary orientation/polarity helps
to resolve between very similar nearby boundary seg-
ments with opposite transitions (dark to bright/bright to
dark). The usage of directed weighted graphs also allows
the incorporation of shape constraints as demonstrated
in [25].
In this work, we discuss how to incorporate this ori-

entation information, by exploring digraphs, in another
member of the ε∞-minimization family, a region-based
approach called relative fuzzy connectedness (RFC) [26].
RFC is an important method, which presents some nice
theoretical properties, such as the robustness with respect
to the seed choice [26]. The regions where the seeds are
free to move without affecting the segmentation are called
in some works as the cores [10]. In RFC, the cores for each
seed coincide with its corresponding delineated regions
by RFC. The cores of RFC are key elements in theoretical
analysis to support effective semi-automatic correction
(i.e., to fix a poor automatic segmentation in an interac-
tive tool [27,28]), by finding a suitable set of seeds that
assembles a given segmentation [10]. The RFC also has
the advantage of producing a low false positive rate, which
allows it to be combined with other methods in powerful
hybrid approaches [29,30].

A short version of this work was published in a con-
ference paper [31]. Here, the proposed method, named
oriented relative fuzzy connectedness (ORFC), is pre-
sented in more details, including experiments involving
large three-dimensional datasets, and showing the run-
ning time curves.We also extend the hybrid approach [29]
to directed weighted graphs, incorporating the boundary
polarity by combining the strengths of oriented relative
fuzzy connectedness and graph cut. The novel hybrid
approach is more robust than the original graph cut with
respect to the seed choice (thus, avoiding ‘shrinking prob-
lem’ of GC), and it also outperforms the previous hybrid
method [29] and OIFT, with running times close to linear.
Section 2 explains the basic concepts on image graphs

and introduces the terminology and notation to be used
throughout the text. Section 3 shows the original RFC.
Section 4 presents the related oriented image forest-
ing transform. The proposed extension of RFC, named
oriented relative fuzzy connectedness, is presented in
Section 5, and its applications in hybrid image segmen-
tation (ORFC and graph cut) are shown in Section 6.
Sections 7 and 8 discuss the experimental results and
conclusions.

2 Background
A multi-dimensional and multi-spectral image Î is a pair
(I , �I) where I ⊂ Zn is the image domain and �I(a) assigns
a set ofm scalars Ii(a), i = 1, 2, . . . ,m, to each pixel a ∈ I .
The subindex i is removed whenm = 1.
An image can be interpreted as a weighted digraph G =

〈V ,E,w〉 whose nodes V are the image pixels in its image
domain I ⊂ Zn and whose arcs are the ordered pixel pairs
〈a, b〉 ∈ E. For example, one can take E to consist of all
pairs of pixels 〈a, b〉 in the Cartesian product I × I such
that d(a, b) ≤ ρ and a 	= b, where d(a, b) denotes the
Euclidean distance and ρ is a specified constant (e.g., 4-
neighborhood, when ρ = 1, and 8-neighborhood, when
ρ = √

2, in case of 2D images). The digraph G is symmet-
ric if for any of its arcs 〈a, b〉, the pair 〈b, a〉 is also an arc
of G. Each arc 〈a, b〉 ∈ E has a fixed weight w(a, b) ≥ 0,
between neighboring pixels, which is ideally designed to
have lower values in the boundary transitions of the object
of interest (e.g., w(a, b) = K − |I(a) − I(b)|, where K is
the greatest difference in image brightness for a single-
channel image with values given by I(a)). A symmetric
digraph is undirected weighted if w(a, b) = w(b, a) for
all 〈a, b〉 ∈ E; otherwise, we have a directed weighted
digraph.
The transpose GT = 〈V ,ET ,wT 〉 of a weighted digraph

G = 〈V ,E,w〉 is the unique weighted digraph on the
same set of vertices V with all of the arcs reversed com-
pared to the orientation of the corresponding arcs in G
(i.e., for any of its arcs 〈a, b〉 ∈ ET , the pair 〈b, a〉 is an
arc of G, and wT (a, b) = w(b, a)). A weighted digraph G
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is symmetric and undirected weighted if G is the same as
its transpose.
For a given image graph G = 〈V ,E,w〉, a path πa =

〈t1, t2, . . . , tn = a〉 is a sequence of adjacent pixels with ter-
minus at a pixel a. A path is trivial when πa = 〈a〉. A path
πb = πa · 〈a, b〉 indicates the extension of a path πa by an
arc 〈a, b〉. When we want to explicitly indicate the origin
of a path, the notation πa�b = 〈t1 = a, t2, . . . , tn = b〉
may also be used, where a stands for the origin and b for
the destination node. More generally, we can use πS�b =
〈t1, t2, . . . , tn = b〉 to indicate a path with origin restricted
to a set S (i.e., t1 ∈ S). A digraph is said to be strongly con-
nected if there is a path from every vertex to every other
vertex. A connectivity function computes a value f (πa) for
any path πa, usually based on arc weights. A path πa is
optimum if f (πa) ≥ f (τa) for any other path τa in G.
For every weighted digraph G = 〈V ,E,w〉, consider the

space X̃ of all functions x: V → [0, 1], referred to as fuzzy
subsets of V, with the value x(a) indicating a degree of
membership with which a belongs to the set. The fam-
ily X of all functions x ∈ X̃ with the only allowed values
of 0 and 1 (i.e., x : V → {0, 1}) will be referred to as the
family of all hard subsets of V. Each x ∈ X is identified
with the true subset P = {c ∈ V : x(c) = 1} of V. Notice
that, in such a case, x is the characteristic function χP of
P ⊂ V . We usually restrict the collection X of all allow-
able objects by indicating two disjoint sets, referred to as
seeds: So ⊂ V indicating the object and Sb ⊂ V indicating
the background.
This restricts the collection of allowable outputs of the

algorithm to the familyX (So,Sb) of all x ∈ X with x(a) =
1 for all a ∈ So and x(b) = 0 for all b ∈ Sb. Note that
X (So,Sb) = {χP : So ⊂ P ⊂ V \ Sb}.

3 RFC
3.1 The original definition by connectivity functions
Next, we show the original RFC definition as proposed
in [32] for undirected weighted graphs. Consider the fol-
lowing connectivity function:

f Smin(〈a〉) =
{
wmax + 1 if a ∈ S
−∞ otherwise

f Smin(πa · 〈a, b〉) = min{f Smin(πa),w(a, b)}
where wmax = max〈a,b〉∈E w(a, b). Two connectivity maps
are computed by using two executions of the image forest-
ing transform (IFT) [13]:

Vo(a) = max
πa ∈ �(G,a)

{f So
min(πa)}, (1)

Vb(a) = max
πa ∈ �(G,a)

{f Sb
min(πa)}, (2)

where �(G, a) is the set of all possible paths in the
graph G with terminus at the node a. The segmentation
ARFC(So,Sb) of the RFC method is obtained by compar-
ing the twomaps of connectivityVo andVb, such that each
pixel a ∈ V is labeled as belonging to the object only if
Vo(a) > Vb(a) (Figure 1).

ARFC(So,Sb) = χO : O = {a ∈ V : Vo(a) > Vb(a)} (3)

3.2 RFC as a ε∞-optimizer
The RFC method can also be seen as an optimum
cut in the undirected weighted graph according to an
appropriate objective function of graph cut, as discussed
in [17,19,33].
For q ∈ [1,∞] consider the energy functional εq : X̃ →

[0,∞), where, for every x ∈ X̃ , εq(x) is defined as the
q-norm of the functional Fx : E → R, given by the for-
mula Fx(a, b) = w(a, b)|x(a) − x(b)| for 〈a, b〉 ∈ E. That
is, εq(x) = ||Fx||q = q

√ ∑
〈a,b〉∈E

(w(a, b)|x(a) − x(b)|)q, for
q < ∞.
Notice that lim

q→∞ εq(x) = ε∞(x), since q-norms con-
verge, as q → ∞, to the ∞-norm.

ε∞(x) = ||Fx||∞ = max
〈c,d〉∈E

w(c, d)|x(c) − x(d)| (4)

Figure 1 Example of RFC following the definition based on paths. (a) The object seed ×, where fSo
min(πa) = 8, fSo

min(πb) = 1, fSo
min(πc) = 6 , and

fSo
min(πd) = 7. (b) The background seed (asterisk), where fSb

min(πd) = 8, fSb
min(πb) = 1, fSb

min(πc) = 6, and fSb
min(πa) = 7. (c) Segmentation result via RFC.
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Restricting the analysis to only binary solutions x =
χP ∈ X , we have:

ε∞(x) = ||Fx||∞ = max
〈c,d〉∈E

w(c, d)|x(c) − x(d)|
= max

〈a,b〉∈C(x)
w(a, b),

(5)

where C(x) = {〈a, b〉 ∈ E : x(a) 	= x(b)} is a set of cutting
edges.
Let ε∞↓ be the minimum of the energy ε∞(x)

over all allowable objects x ∈ X (So,Sb), that is,
ε∞↓ = min{ε∞(x) : x ∈ X (So,Sb)}. Any element of
X∞(So,Sb) = {x ∈ X (So,Sb) : ε∞(x) = ε∞↓} will
be referred to as an optimum energy solution of ε∞ in
X (So,Sb). Any algorithm A that, given a graph and seed
sets So and Sb, returns an object, denoted by A(So,Sb),
from X∞(So,Sb) will be referred to as an ε∞-minimizing
algorithm. The RFC algorithm is an ε∞-minimizing algo-
rithm, that is, ARFC(So,Sb) ∈ X∞(So,Sb) [29]. In the case
of a single internal seed s1 (Figure 2), we have the following
alternative definition of RFC based on graph cut:

ARFC({s1},Sb) = χO ∈ X∞({s1},Sb) : |O|
= min{|P| : χP ∈ X∞({s1},Sb)}

(6)

The case of multiple internal seeds is then treated using
the following equation:

ARFC(So,Sb) = χO : O =
⎡
⎣ ⋃
si∈So

P : χP = ARFC({si},Sb)

⎤
⎦
(7)

4 OIFT
A directed weighted graph is computed, where w(a, b) is
a combination of a regular undirected similarity measure
δ(a, b), multiplied by an orientation factor, as follows:

w(a, b) =
⎧⎨
⎩

δ(a, b) × (1 − α) if I(a) > I(b)
δ(a, b) × (1 + α) if I(a) < I(b)
δ(a, b) otherwise

(8)

Several different procedures can be adopted for δ(a, b),
such as the complement of the absolute value of the differ-
ence of image intensities (i.e., δ(a, b) = K − |I(a) − I(b)|),

or the affinity functions discussed in [34,35]. Note that we
have a directed weighted graph (w(a, b) 	= w(b, a)) when
α > 0.
The oriented image foresting transform is build upon

the IFT framework by considering the following path
function in a symmetric digraph:

f S1,S2OIFT(〈a〉) =
{
wmax + 1 if a ∈ S1 ∪ S2
−∞ otherwise

f S1,S2OIFT (πc�a.〈a, b〉) =
⎧⎨
⎩

min
{
f S1,S2OIFT (πc�a), 2 · w(b, a)

}
if c ∈ S1

min
{
f S1,S2OIFT (πc�a), 2 · w(a, b) + 1

}
otherwise

OIFT has two versions: Ain
OIFT(So, Sb) which favors tran-

sitions from dark to bright pixels, and Aout
OIFT(So, Sb) which

has the opposite orientation. Ain
OIFT(So, Sb) is obtained by

computing one IFT with connectivity function f So,SbOIFT, and
by taking as object pixels the set of pixels that were con-
quered by paths rooted in So. Aout

OIFT(So, Sb) is similarly
computed, but using f Sb,SoOIFT.
One important thing to note is that the function f S1,S2OIFT

is a non-smooth connectivity function, as shown in [22].
When a path-value function is not smooth, the IFT will
still return a spanning forest, but the paths may not be
optimum [13]. However, the optimality of OIFT is still
supported by an energy criterion of cut in graphs [22,23].

5 ORFC
Differently from RFC, the definitions of ORFC based on
paths and based on cuts in the digraph lead to different
results (Figures 3a,b). The different obtained algorithms
will be denoted as Ain,�

ORFC and Aout,�
ORFC for the path-

based definition and Ain,Q
ORFC and Aout,Q

ORFC for the cut-based
definition.

5.1 ORFC definition by reverse connectivity functions
Based on the previous works [22,23], we consider the
following new connectivity function in digraphs:

Figure 2 Example of the RFC definition by optimum energy. The three above solutions (a,b,c) have optimum energy ε∞(x) = 7, but we have that
only (c) corresponds to a valid RFC solution according to Equation 6 for the seeds given in Figure 1.
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Figure 3 Example of the different ORFC definitions. (a) ORFC by reverse connectivity functions, with orientation from dark to bright pixels (Ain,�ORFC).

(b) ORFC as a directed cut in the digraph (Ain,QORFC). (c) The region of seed robustness (core) of Ain,QORFC.

f 	‖ S
min(〈a〉) =

{
wmax + 1 if a ∈ S
−∞ otherwise

f 	‖ S
min(πa · 〈a, b〉) = min{f 	‖S

min(πa),w(b, a)}
where 〈b, a〉 is an anti-parallel arc.
Note that f 	‖ S

min is a smooth function, and therefore, V 	‖
o

and V 	‖
b are optimum connectivity maps. These two con-

nectivity maps are generated by executing the IFT with
anti-parallel connectivity functions:

V 	‖
o (a) = max

πa∈�(G,a)
{f 	‖ So
min (πa)} (9)

V 	‖
b (a) = max

πa∈�(G,a)
{f 	‖ Sb
min (πa)} (10)

Following the same key idea from [22] (i.e., to con-
sider reversed connectivity functions for one of the
seed sets), we have the following natural definition for
ORFC: The segmentation Aout,�

ORFC (So, Sb) favoring transi-
tions from bright to dark pixels is obtained by comparing
the connectivity maps Vo(a) and V 	‖

b (a), such that each
pixel a ∈ V is labeled as belonging to the object only if
Vo(a) > V 	‖

b (a).

Aout,�
ORFC (So, Sb) = χO : O = {a ∈ V : Vo(a) > V 	‖

b (a)}
(11)

The segmentation Ain,�
ORFC(So, Sb) favoring transitions

from dark to bright pixels is obtained by comparing the
connectivity maps V 	‖

o (a) and Vb(a), such that each pixel
a ∈ V is labeled as belonging to the object only if V 	‖

o (a) >

Vb(a).

Ain,�
ORFC(So, Sb) = χO : O = {a ∈ V : V 	‖

o (a) > Vb(a)}
(12)

Note that although this ORFC version is based on opti-
mum connectivity maps, its practical results have undesir-
able characteristics, such as the presence of disconnected
regions and high false-positive rates, leading to unsatisfac-
tory results (Figure 3a).

5.2 ORFC as a directed cut in the digraph
Given that the previous ORFC definition (Section 5.1)
presents undesirable results, in this section, we present an
alternative definition supported by a graph cut optimal-
ity criterion, which is motivated by the definitions from
Section 3.2.
Differently from Section 3.2, in the case of directed

graphs, we have two possible sets of cuts (Figure 4):

Cout(x) = {〈a, b〉 ∈ E : x(a) = 1 ∧ x(b) = 0} (13)

Cin(x) = {〈a, b〉 ∈ E : x(a) = 0 ∧ x(b) = 1} (14)
So we have two possible formulations for the energy

functional of the ε∞-minimizing problem.

εout∞ (x) = max
〈a,b〉∈Cout(x)

w(a, b) (15)

εin∞(x) = max
〈a,b〉∈Cin(x)

w(a, b) (16)

Let εout∞↓ be the minimum value of the energy εout∞ (x),
that is:

εout∞↓ = min{εout∞ (x) : x ∈ X (So,Sb)} (17)

Similarly, for εin∞(x), we have:

εin∞↓ = min{εin∞(x) : x ∈ X (So,Sb)} (18)

Therefore, we have the following sets of solutions:
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Figure 4 The two possible sets of cuts. The inner and outer cuts for a candidate object showing the input and output arcs (a,b).

X out∞ (So,Sb) =
{
x ∈ X (So,Sb) : εout∞ (x) = εout∞↓

}
(19)

X in∞(So,Sb) =
{
x ∈ X (So,Sb) : εin∞(x) = εin∞↓

}
(20)

The ORFC algorithms on digraphs have the following
definitions based on cut in graph:
For the outer cut ‘out’ with one internal seed s1,

Aout,Q
ORFC({s1},Sb) = χO ∈ X out∞ ({s1},Sb) : |O|

= min {|P| : χP ∈ X out∞ ({s1},Sb)}
(21)

and in the case of multiple internal seeds,

Aout,Q
ORFC(So,Sb) = χO : O =

⎡
⎣ ⋃
si∈So

P : χP = Aout,Q
ORFC({si},Sb)

⎤
⎦

(22)

For the inner cut ‘in’ with one internal seed s1,

Ain,Q
ORFC({s1},Sb) = χO ∈ X in∞({s1},Sb) : |O|

= min {|P| : χP ∈ X in∞({s1},Sb)}
(23)

and in the case of multiple internal seeds,

Ain,Q
ORFC(So,Sb) = χO : O =

⎡
⎣ ⋃
si∈So

P : χP = Ain,Q
ORFC({si},Sb)

⎤
⎦

(24)

5.3 ORFC algorithm based on graph cut
In order to show the proposed algorithms, we need the
following definition:

Definition 1 (Directed connected component). For a
given vertex x of a digraph G, the directed connected com-
ponent of basepoint x is the set, denoted by DCCG(x),
of all the successors of x in G (i.e., all the nodes that are
reachable from vertex x by some path).

Algorithm 1:
Algorithm to compute Ain,Q

ORFC({si}, Sb):

1. Compute the value of the map Vb(si) for
the function f Sbmin.

2. Remove from the digraph G all arcs with
weight ≤ εin∞↓ = Vb(si), obtaining a new
digraph G≤.

3. Assign to the object the pixels that belong
to the directed connected component of
basepoint si in the transpose graph of
G≤ (i.e.,Ain,Q

ORFC({si}, Sb) = χO : O =
DCCGT≤(si)).

Figure 5 illustrates the steps of Algorithm 1.

Algorithm 2:
Algorithm to compute Aout,Q

ORFC({si}, Sb):

1. Compute the value of the map V 	‖
b (si) for

the function f 	‖ Sb
min .

2. Remove from the digraph G all arcs with
weight ≤ εout∞↓ = V 	‖

b (si), obtaining a new
digraph G≤.

3. Assign to the object the pixels that belong
to the directed connected component of
basepoint si in the graph G≤ (i.e.,
Aout,Q
ORFC({si}, Sb) = χO : O = DCCG≤(si)).

To prove the correctness of the above algorithms, we
need the following lemma:

Lemma 1. For a given weighted digraph G, and sets of
seeds So and Sb, such that So = {si}, we have that εin∞↓ =
Vb(si), and εout∞↓ = V 	‖

b (si).
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Figure 5 Algorithm Ain,QORFC(So = {si}, Sb). (a) Image as a digraph. (b) Initialization of IFT with background seed Sb for computing the connectivity

value Vb(si) using the connectivity function f Sbmin. (c) Result of Step 1: The value Vb(si) = 1 is computed by the IFT. (d) Step 2: The graph G≤ . (e,f)
Step 3: The transpose graph of G≤ and finally, the object’s pixels from the DCC.

Figure 6 An example result of ORFC+GC. The segmentation of the wrist by: (a) IRFC [9], (b) OIFT [22], (c) RFC+GC [29], and (d) ORFC+GC.
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Figure 7 Algorithm Aout,QORFC+GC(So , Sb). (a) Input image with seeds So and Sb . (b) P : χP = Aout,QORFC (So , Sb). (c) Q : χQ = Ain,QORFC(Sb , So). (d) A
out
OGC(P,Q).

Proof. Wewill prove Lemma 1 for εin∞↓ = Vb(si), but the
case εout∞↓ = V 	‖

b (si) has an essentially identical proof. The
proof is based on the following statement: (1) For the given
strongly connected digraph G, if we remove all arcs 〈a, b〉,
such that w(a, b) < εin∞↓, we then obtain a new digraph
G′ where there still exists a path from Sb to si (i.e., ∃πt�si
where t ∈ Sb).
This statement can be proven by contraction. Let T

be the set of pixels reachable from Sb in G′ (i.e., T =⋃
x∈Sb

DCCG′(x)). If there is no path from Sb to si in G′,
then we have that si /∈ T . Therefore, we have a partition
of the vertices into two disjoint sets T and V\T . Note
that its corresponding cutting arcs 〈a, b〉 ∈ Cin(χV/T ) all
have w(a, b) < εin∞↓ in G. Consequently, Cin(χV/T ) has
a better cut value than εin∞↓, which is a contradiction by
Equation 18.
From statement (1), we may conclude that there is a

path from Sb to si in G, which is composed only by arcs

〈a, b〉 : w(a, b) ≥ εin∞↓. Hence, the connectivity valueVb(si)
of an optimum path from Sb to si (Equation 2) cannot be
lower than εin∞↓, i.e., Vb(si) ≥ εin∞↓ (2).
Consider the set of cutting arcs Cin(xopt) of an optimum

solution xopt ∈ X in∞({si},Sb). By definition (Equations 16
and 18), we have that w(a, b) ≤ εin∞↓ for all 〈a, b〉 ∈
Cin(xopt). An optimum path πSb�si , from Sb to si, must
necessarily pass through some arc of Cin(xopt). So its con-
nectivity value f Sb

min(πSb�si) = Vb(si) cannot be greater
than εin∞↓, i.e., Vb(si) ≤ εin∞↓ (3).
From the above conditions (2) and (3), we may conclude

that the only valid configuration is Vb(si) = εin∞↓.

For the sake of simplicity, we will only discuss here
the proof of correctness of the Ain,Q

ORFC({si}, Sb) algorithm,
in terms of Equation 23, where s1 = si and εin∞↓ =
Vb(si) (Lemma 1). The algorithm for Aout,Q

ORFC({si}, Sb) has
an essentially identical proof.

Figure 8 Example result by OIFT and ORFC. (a) A CT slice image of the liver with seeds obtained by eroding and dilating the true segmentation.
(b,c) The segmentation results with a postprocessing by closing of holes for: (b) OIFT and (c) ORFC.
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First, we need to prove that the characteristic function
χO of O = DCCGT≤(si) is an optimum solution in
X in∞({si},Sb). Note that, in the digraph GT≤, there are no

arcs from pixels in DCCGT≤(si) to pixels in V\DCCGT≤(si);
otherwise, the list of successors of si in GT≤, given by
DCCGT≤(si), would not be complete. These arcs were

Figure 9 Example results for the different methods. (a) A talus bone in an MRI slice of a foot with user-selected markers. (b) The image-based arc
weight assignment from [36]. (c-f) The segmentation results for: (c) IRFC, (d) RFC, (e) OIFT, and (f) ORFC. The segmentations are shown highlighted
with a yellow overlay.
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removed in Step 2 of the Ain,Q
ORFC({si}, Sb) algorithm and,

therefore, have no values greater than εin∞↓, so the char-
acteristic function of DCCGT≤(si) must be an optimum
solution in X in∞({si},Sb).
The other conditions in Equation 23 force

Ain,Q
ORFC({si}, Sb) to constitute the smallest object in

X in∞({si},Sb). Note that any object composed by a set
of pixels T, such that there are arcs from pixels in T to
pixels in V\T in the digraph GT≤, cannot be an optimum
solution in X in∞({si},Sb) because these arcs have corre-
sponding anti-parallel arcs in G≤, pointing toward object
pixels, with values greater than εin∞↓, leading to a worse
inner cut. Since all proper subsets of DCCGT≤(si) still have

some outgoing arcs in the digraph GT≤ and, consequently,
incoming arcs in G≤, we have that they are not optimum.
Therefore, DCCGT≤(si) is the smallest optimum solution.
To solve the case of Ain,Q

ORFC(So,Sb) with multiple inter-
nal seeds, according to Equation 24, we need to repeat
the execution of Algorithm 1 for each internal seed. How-
ever, the following proposition applies in the case of
Ain,Q
ORFC(So,Sb):

Proposition 1. For a given digraph G = 〈V ,E,w〉
and seed si ∈ So, consider the residual digraph Gsi =
G≤ = 〈V , {〈a, b〉 ∈ E : w(a, b) > Vb(si)},w〉 (step 2 of
Algorithm 1). For any arbitrary seeds s1 ∈ So and s2 ∈ So,

Figure 10 The experimental curves for the 2D datasets. The mean accuracy curves (dice coefficient of similarity) and the normalized false positive
curves, using non-equally eroded-dilated seeds, for segmenting: (a,b) calcaneus, (c,d) talus, and (e,f) liver.
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Figure 11 The running time curves for the 2D datasets. The computational time using non-equally eroded-dilated seeds, for segmenting:
(a) calcaneus, (b) talus, and (c) liver.

if Vb(s1) ≤ Vb(s2) and s2 ∈ DCCGT
s1

(s1), then we have that
DCCGT

s2
(s2) ⊂ DCCGT

s1
(s1).

If we sort the seeds si in So according to their Vb(si)
values, then we can process the seeds in increasing order
of values, allowing us to avoid the reprocessing of pixels
by skipping the seeds that were already assigned to the
object, greatly improving the running time.
One important thing to note is that ORFC encompasses

RFC as a particular case whenever the parameter α is set
to zero.

6 Hybrid segmentation: ORFC and graph cut
In this section, we follow the same key ideas from [29],
which proposes a hybrid approach combining the
strengths of relative fuzzy connectedness and min-
cut/max-flow algorithm.
The GC natively supports the soft constraint of bound-

ary polarity and will be denoted as oriented graph
cut (OGC). It (Aout

OGC(So, Sb)) solves the ε1-minimization
problem by considering the arcs that limit the flow from
the source to the sink and consequently minimizes the
sum of the arcs pointing from object to background pix-
els (i.e., the outer cut) [11]. The minimization of the sum

of the arcs of the inner cut (Ain
OGC(So, Sb)) can be obtained

by inverting the source and sink nodes or by reversing all
arcs by computing GC over the graph’s transpose GT .
Basically, by considering in [29] a directed weighted

graph, with ORFC in place of RFC, we have the
ORFC+GC hybrid approach (Figure 6) as follows:

Algorithm 3:
Algorithm to compute Ain,Q

ORFC+GC(So, Sb):

1. Compute P : χP = Ain,Q
ORFC(So, Sb).

2. Compute Q : χQ = Aout,Q
ORFC(Sb, So).

3. Compute and return Ain
OGC(P,Q).

Algorithm 4:
Algorithm to compute Aout,Q

ORFC+GC(So, Sb):

1. Compute P : χP = Aout,Q
ORFC(So, Sb).

2. Compute Q : χQ = Ain,Q
ORFC(Sb, So).

3. Compute and return Aout
OGC(P,Q).

Figure 7 illustrates the steps of Algorithm 4.
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Figure 12 Example of skull stripping. (a) The ground truth. The segmentation results for: (b) OGC, (c) RFC, (d) ORFC, (e) IRFC, (f) OIFT, (g) RFC+GC,
and (h) ORFC+GC.
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7 Experimental results
In the first experiment, we used 40 slice images from
real MR images of the foot. We performed the segmenta-
tion of the bones calcaneus and talus for all the methods
(IRFC [9], RFC [26], OIFT [23], RFC+GC [29], OGC [11] -
the graph cut with boundary polarity, ORFC, and the pro-
posed hybrid method ORFC+GC), for different seed sets
automatically obtained by eroding and dilating the ground
truth at different radius values. By varying the radius
value, we can repeat the segmentation for different seed
sets and trace accuracy curves using the dice coefficient
of similarity and error curves of false positive (normal-
ized by the object size). However, in order to generate a
more challenging situation, we considered a larger radius
of dilation for the external seeds (twice the value of the
inner radius), resulting in an asymmetrical arrangement
of seeds. In the second experiment, 40 slice images from
CT thoracic studies of 10 subjects were used to segment
the liver following the same procedure for seed selec-
tion (Figure 8). In all cases, the ground truth data was
obtained from an expert of the Radiology Department at
the University of Pennsylvania.
Several different procedures can be adopted for

δ(a, b) [34,35]. For example, Figures 3 and 9 show some
results for user-selected markers using the image-based
weight assignment from [36]. For the sake of simplicity,

in the quantitative experiments, we adopted the weight
assignment δ(a, b) = K − |G(a) + G(b)|, where G(a)
denotes the gradient magnitude of the Sobel operator. In
Equation 8, α could be in the range of [ 0, 1], we consid-
ered α = 0.5 in all experiments involving OIFT, OGC,
ORFC, and ORFC+GC and α = 0.0 in the case of undi-
rected approaches. The value α = 0.5 is the default value
adopted in experimental results [22,23], which is a more
well balanced configuration. For low values (α ≈ 0.0),
the oriented methods (e.g., ORFC) degenerate into their
counterpart undirected approaches (e.g., RFC), and for
high values, the oriented methods may become more sen-
sitive to noise. We used Ain,Q

ORFC for the foot bones, since
they present transitions from dark to bright pixels and
Aout,Q
ORFC for the liver, since it has the opposite orientation.
Figure 10 shows the accuracy and error curves, and

Figure 11 shows the running time curves for all the meth-
ods. Since the considered objects are not expected to
have holes, we considered a post-processing by closing
of holes (CoH) [37] for RFC and ORFC. Indeed, RFC is
known to potentially exclude regions inside the object that
are surrounded by strong edges. Note that its oriented
counterpart method, ORFC, also inherits this property.
In general, the results show that ORFC can achieve

higher accuracy values than RFC, with low false positive
errors. Hence, it could be combinedwith othermethods in

Figure 13 The experimental curves for the 3D datasets. The mean accuracy (dice coefficient) and normalized false positive curves, using
non-equally eroded-dilated seeds, for segmenting: (a,b) cerebellum dataset and (c,d) skull stripping dataset.
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Figure 14 The running time curves for the 3D datasets. The computational time using non-equally eroded-dilated seeds, for segmenting:
(a) cerebellum dataset and (b) skull stripping dataset.

powerful hybrid approaches. Indeed, the hybrid approach
ORFC+GC showed the best results for the calcaneus
bone, being more robust than the graph cut with respect
to the seed choice. OGC presents a drop of accuracy for
higher radius values due to the known ‘shrinking problem’
of graph cut. ORFC presented the best results for the liver
segmentation, taking advantage of its homogeneous inte-
rior. For the talus, ORFC showed a similar accuracy than
ORFC+GC, but with a lower false positive rate and being
less time-consuming.
We also repeated the experiments using two three-

dimensional datasets. In the former case, a MRI-T1
dataset of the human brain was used to segment the cere-
bellum. The images were taken from 20 normal subjects
from both genders, in the age range from 16 to 49 years.
The images were acquired with a 2T Elscint scanner and
at a voxel size of 0.98×0.98×1.00 mm3. The cerebellum is
connected to the rest of the brain through the brain stem
and through its top due to partial volume. The absence of
a clear boundary between these structures poses a signif-
icant challenge for segmentation. For the second dataset,
we considered a skull stripping task (Figure 12) (i.e., to
eliminate background, bones, eyes, skin, and blood ves-
sels) using ten 3 Tesla MRI-T1 images, that include the
head and, at least, a small portion of the neck of male and
female adults with normal brains.
Figures 13 and 14 show the experimental curves. The

RFC and ORFC methods performed poorly on these
datasets due to the lack of a clear contrast between the
structures. Nevertheless, the hybrid approach ORFC+GC
showed the overall best results, demonstrating the impor-
tance of hybrid methods, and making clear that, even in
these cases, ORFC can help to improve the graph cut
delineation and to reduce its running time.

8 Conclusions
In this paper, we introduced the ORFC technique and
showed that it can effectively exploit the boundary

polarity improving the results in relation to its predeces-
sor RFC. We also presented a powerful hybrid approach,
which outperforms the previous works [29,30]. As future
work, we plan to investigate the theoretical relations
between ORFC and OIFT, the usage of shape constraints
in the ORFC (similar to what was done in [25]), and to
combine the proposed methods with fuzzy object mod-
els [38-41] in order to get a fully automatic segmentation
result.
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