

High Dimensional Signal Processing Research Group

Motivation

Cameras are everywhere! How to develop privacy-preserving vision systems?

We want to prevent the camera from obtaining detailed visual data that may contain private information, desirably at the hardware level.

Prior work on Privacy-preserving vision

Low-resolution

- Lose information.
- Pose estimation fails.
- **De-focusing** • Susceptible to reverse engineering attacks.
- estimation quality.

Our key idea: instead of fixed/manually define optics, we'll design optical distortion in a way that doesn't degrade the vision algorithm performance.

Traditional Deep-optics-based Computational Cameras Computer Vision (Processing) Optics (Acquisition) Convolution with PSF > Sensor Image > Reconstruction! Human Pose Estimation Human Pose Standard Backbone Network

- The concept of Deep Optics refers to the joint design of optics and algorithms to boost the performance of the final task.
- All Deep Optics methods rely on the same approach: to remove the aberrations from the lens to obtain high-quality reconstructed images.

Learning Privacy-preserving Optics For Human Pose Estimation

<u>Carlos Hinojosa¹</u>, Juan Carlos Niebles², Henry Arguello¹ ¹Universidad Industrial de Santander ²Stanford University

Model and Approach

Depth cameras Bright sunlight degrades depth

- We rely on the converse approach of deep optics: We add aberrations to the lens to obtain privacy protection and jointly perform HPE.
- Our optimization process has two parts: an optical encoder, which provides hardware-level privacy protection by degrading the image quality, and a CNN decoder that learns features from the highly degraded images to perform HPE.

End-to-end Optimization

Formally, we formulate our optimization problem by combining the two goals: to acquire privacy-preserving images and to perform HPE with high accuracy. $\alpha^*, h^* = \arg\min I$

Lens Parametrization (α)

• We parameterize the surface profile of the lens with • To perform HPE, we adopted the Zernike polynomials, where each one describes a OpenPose (OPPS) network. wavefront aberration. We separate the face and body $\boldsymbol{\phi} = \sum \alpha_i \mathbf{Z}_i,$

$$\varphi \qquad \sum_{j=1}^{\infty} \omega_j \Delta_j$$

- We learn α_i
- Defocus Astigmatism Quatrefoil Spherical $\bullet \phi$ is the lens surface.

Datasets and Metrics

Dataset

We train our proposed end-to-end approach on the COCO 2017 keypoints dataset and evaluate our approach on the val2017 set. Metrics

HPE	Face Rec		
We use the standard COCO	We implement the		
evaluation metric: Object Keypoint	to measure priv		
Similarity (OKS). To make a fair	ArcFace on three		
comparison, we sightly modify the	datasets. We		
COCO evaluation script to not	performance in te		
consider the face keypoints.	under the curve (A		

$$L_T(h) + L_P(\alpha).$$

Human Pose Estimation Network (h)

- Keypoint detection Body Face
- keypoints.
- We seek a network that accurately detects the body points while ignoring the face points.

cognition

Image Quality

ArcFace network To measure image degradation, we ivacy. We train use the peak-signal-to-noise ratio face recognition (PSNR) and the structural similarity its index measure (SSIM). We expect to erms of the area achieve lower PSNR and SSIM AUC) of the ROC. values.

carlos.hinojosa@saber.uis.edu.co

Qualitative Results on Example COCO Images

Quantitative Experiments: Comparison with Prior Works

Method	PSNR	SSIM	AP	AR
OPPS (Upper Bound)	_		0.421	0.506
Defocus Lens	16.614	0.598	0.197	0.256
Low-Resolution	18.54	0.476	0.067	0.106
PP-OPPS (Ours)	14.851	0.567	0.302	0.363

Experiments: Ablation Studies

We compare our method traditional two against privacy-preserving approaches: Defocus and Low-resolution cameras. OPPS stands for the original OpenPose network. The PP stands for our prefix proposed approach.