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Neural networks have shown promising sonar data
results In sonar perception tasks such as
object recognition [1], image patch matching
[2] and 1mage classification [3]. In the
context of autonomous underwater vehicles, (a) Glass Bottle T (b) Can

it is crucial to develop robust models to
overcome the challenges of underwater o | A -
perception. . P N | R
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In this work, we report progress on a
comparative evaluation of self-supervised
learning (SSL) [6][7] and supervised learning
(SL) as pretraining methods for sonar
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trained neural networks on the Marine Debris Looking Sonar.
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size 96x96. Thereafter, we evaluate the ol 4 = v 16 T e * Custom ROS nodes for data collection

quality of the learned features by using J8 = S o T e :
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on a target dataset called Marine Debris - & 2 RN RIS B (a) ResNet20 (b) MobileNet
Turntable [3]. aiia . . . — o
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Self-supervised pre-training | P o T | * Pretext tasks are showing positive results to overcome
| i o B BV, the problem of data annotation in sonar images

* SSL pre-training has a similar performance against SL pre-
training on sonar images

The results presented in this poster indicate

that_ the SSL plje-trained models have a g = f., E =TT -  Compare other SSL methods: Denoising Autoencoders,
similar classification performance compared R e gl 7 o Jigsaw Puzzle, Contrastive methods
to the SL counterpart across all the neural il - Cone ek b i e 5 E e o . .

. K dels. Th its indicate that o g il | - - s * Evaluate ssl pre-training in more tasks (image translation,
NeEtWOrkK modadeis. ese resuits Indicate tha Teees e 5 b F 4 R L I object detection) with gemini dataset

SSL pre-training are a promising substitute
for SL methods without compromising object
classification and no need of manual label
annotations.
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