# **Convolutional neural network architectures and aggregation information models for** pulmonary X-ray segmentation

Antonio Nadal-Martínez<sup>1</sup>, Lidia Talavera-Martínez<sup>123</sup>, Marc Munar<sup>123</sup>, Manuel González-Hidalgo<sup>1234</sup> <sup>1</sup>University of the Balearic Islands. SCOPIA Research Group, <sup>2</sup>Health Research Institute of the Balearic Islands (IdISBa), <sup>3</sup>Artificial Intelligence Research Institute of the Balearic Islands (IAIB), <sup>4</sup>Laboratory of Artificial Intelligence Applications (LAIA)

## Motivation

- Automatic segmentation plays a vital role in medical processing and analysis.
- Aids specialists for precise identification and isolation of regions of interest in medical imaging.

Are aggregation functions of CNN models and consensus methods effective for improving pulmonary region segmentation in X-ray images?

## Methodology

Examples of images from the databases that constitute the dataset used in the study: (a) JSRT, (b) Montgomery, (c) and (d) COVID-19 Radiography Database.



7 CNN models: GSC, ESNet, ERFNet, LinkNet, Unet, UNetPre and CGNet

### 6 aggregation functions based on OWA [1] and WOWA [2] approaches:

- OWA 1: weights obtained from regular monotone increasing quantifier;
- OWA 2: aggregate only top 4 models' segmentations;
- **OWA 3:** includes all segmentations except the worst-performing model;
- WOWA 1: assigns weights based on the model's performance order. The *i*-th model gets the weight;
- WOWA 2: same as WOWA 1 but without the worst model; being n the number of models;
- WOWA 3: same as WOWA 1 but the best model gets a weight of  $\frac{1}{2}$ , while the others get  $\frac{1}{2(n-1)}$ .

**2 consensus methods.** At each pixel:

- Argmax method: selects the maximum value among the q obtained aggregations;
- Mean method: obtains the mean value among the q obtained aggregations.





## Results

### Performance of individual CNN models

|             |        | GSC    | ESNet  | ERFNet | LinkNet | UNetPre | UNet   | CGNet  |
|-------------|--------|--------|--------|--------|---------|---------|--------|--------|
| Accuracy    | Mean   | 0,9916 | 0,9891 | 0,9892 | 0,9893  | 0,9852  | 0,9873 | 0,9684 |
|             | Std    | 0,0074 | 0,0092 | 0,0128 | 0,01    | 0,0085  | 0,0147 | 0,0133 |
|             | Median | 0,9942 | 0,9923 | 0,9926 | 0,9924  | 0,9878  | 0,9917 | 0,9718 |
|             | Mean   | 0,9652 | 0,9559 | 0,956  | 0,9559  | 0,9393  | 0,9467 | 0,8753 |
| Jaccard     | Std    | 0,0303 | 0,035  | 0,0483 | 0,0417  | 0,0358  | 0,0598 | 0,0589 |
|             | Median | 0,9739 | 0,9662 | 0,9679 | 0,9663  | 0,949   | 0,9646 | 0,891  |
| Sensitivity | Mean   | 0,9772 | 0,983  | 0,9781 | 0,9762  | 0,9714  | 0,9595 | 0,9376 |
|             | Std    | 0,0247 | 0,0171 | 0,0285 | 0,0329  | 0,0273  | 0,0574 | 0,0434 |
|             | Median | 0,9841 | 0,9879 | 0,9851 | 0,9857  | 0,9795  | 0,9786 | 0,9483 |



WOWA aggregation weight ratios are determined from the performance classification of the seven networks

| WOWA   | GSC            | ERFNet         | LinkNet        | ESNet          | UNet           | UNetPre        | ( |
|--------|----------------|----------------|----------------|----------------|----------------|----------------|---|
| WOWA 1 | $\frac{7}{28}$ | $\frac{5}{28}$ | $\frac{5}{28}$ | $\frac{5}{28}$ | $\frac{3}{28}$ | $\frac{2}{28}$ |   |
| WOWA 2 | $\frac{6}{21}$ | $\frac{4}{21}$ | $\frac{4}{21}$ | $\frac{4}{21}$ | $\frac{2}{21}$ | $\frac{1}{21}$ |   |
| WOWA 3 | $\frac{6}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ |   |

#### Which is the best aggregation function when using argmax consensus method?

|             |         | OWA 1  | OWA 2  | OWA 3  | WOWA 1 | WOWA 2 | WOWA 3 |
|-------------|---------|--------|--------|--------|--------|--------|--------|
|             | Mean    | 0,9917 | 0,9918 | 0,9919 | 0,992  | 0,992  | 0,9918 |
| Accuracy    | Std     | 0,0068 | 0,0072 | 0,0068 | 0,0071 | 0,0071 | 0,0073 |
|             | Median  | 0,994  | 0,9943 | 0,9942 | 0,9944 | 0,9945 | 0,9944 |
| Jaccard     | Mean    | 0,9658 | 0,9663 | 0,9664 | 0,9671 | 0,9671 | 0,9659 |
|             | Std     | 0,0273 | 0,0296 | 0,0277 | 0,0285 | 0,0286 | 0,0299 |
|             | Median  | 0,9731 | 0,9741 | 0,9734 | 0,9749 | 0,9748 | 0,9749 |
| Sensitivity | Mean    | 0,9807 | 0,9812 | 0,9804 | 0,981  | 0,981  | 0,9779 |
|             | Std     | 0,0215 | 0,0221 | 0,0226 | 0,0216 | 0,0215 | 0,0244 |
|             | Median  | 0,9872 | 0,9881 | 0,9873 | 0,9876 | 0,9876 | 0,9846 |
|             | wiedian | 0,9872 | 0,9001 | 0,9875 | 0,9870 | 0,9870 | 0,9840 |

### Which is the best aggregation function when using mean-based consensus method?

|             |        | OWA 1  | OWA 2  | OWA 3  | WOWA 1 | WOWA 2 | WOWA 3 |
|-------------|--------|--------|--------|--------|--------|--------|--------|
|             | Mean   | 0,9917 | 0,9918 | 0,9919 | 0,992  | 0,992  | 0,9917 |
| Accuracy    | Std    | 0,0068 | 0,0072 | 0,0068 | 0,007  | 0,0071 | 0,0073 |
|             | Median | 0,994  | 0,9943 | 0,9942 | 0,9944 | 0,9945 | 0,9943 |
| Jaccard     | Mean   | 0,9658 | 0,9663 | 0,9664 | 0,967  | 0,9671 | 0,9658 |
|             | Std    | 0,0273 | 0,0295 | 0,0277 | 0,0285 | 0,0286 | 0,0299 |
|             | Median | 0,9731 | 0,9739 | 0,9735 | 0,9749 | 0,9748 | 0,9747 |
| Sensitivity | Mean   | 0,9807 | 0,9812 | 0,9804 | 0,981  | 0,981  | 0,9778 |
|             | Std    | 0,0215 | 0,0221 | 0,0226 | 0,0216 | 0,0215 | 0,0245 |
|             | Median | 0,9872 | 0,9881 | 0,9873 | 0,9876 | 0,9875 | 0,9845 |
|             |        |        |        |        |        |        |        |



### Do aggregation and consensus methods improve individual CNN results?

|             |        | GSC    | WOWA 2 argmax | WOWA 2 mean |
|-------------|--------|--------|---------------|-------------|
|             | Mean   | 0,9916 | 0,992         | 0,992       |
| Accuracy    | Std    | 0,0074 | 0,0071        | 0,0071      |
|             | Median | 0,9942 | 0,9945        | 0,9945      |
|             | Mean   | 0,9652 | 0,9672        | 0,9671      |
| Jaccard     | Std    | 0,0303 | 0,0286        | 0,0286      |
|             | Median | 0,9736 | 0,9748        | 0,9748      |
|             | Mean   | 0,9772 | 0,981         | 0,981       |
| Sensitivity | Std    | 0,0247 | 0,0215        | 0,0215      |
|             | Median | 0,9841 | 0,9876        | 0,9875      |

### Comparison of expert segmentation (green) and segmentation obtained by individual CNNs and the WOWA 2 aggregation function with argmax consensus method (red).



Lung segmentation examples with (a) internal holes and (b) inaccurately segmented regions outside the lung area



Generalization capability of the individual CNNs and our aggregated method (WOWA 2 + argmax) applied to radiographs with untrained conditions (a) sideways positioning and (b) white lung pathology



























## **Conclusions**\*

- Individual CNN models: **GSC model** exhibited superior performance, while the **CGNet was the least** effective.
- WOWA 2 aggregation with the argmax or mean-based consensus method had the best performance → outperforming the GSC-based model.
- Aggregation methods have demonstrated their effectiveness in improving lung segmentation in Xray images.
- The qualitative evaluation confirmed the models' ability to generalize across conditions not included in training data, such as **alternative X**ray positions and "white lung" conditions.

\*All conclusions are supported by statistical analysis.

### References

[1] Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. International journal of intelligent systems, 11(1), 49-73.

[2] Torra, V. (1997). The weighted OWA operator. International journal of intelligent systems, 12(2), 153-166.

