

Motivation

- Object detection is a crucial problem in image processing and computer vision, with significant advances in recent years using deep learning.
- However, most object detectors explore Horizontal Bounding Boxes (HBBs) to encode the object shape/location, which might contain substantial portions of the background.
- •As an alternative, object detectors based on Oriented Bounding Boxes (OBBs) are emerging.

Key idea

 We propose Probabilistic IoU (ProbloU) considers fuzzy object representations as probability density functions.

$$\mu = \frac{1}{N} \int_{x \in \Omega} x \mathrm{d}x, \Sigma = \frac{1}{N} \int_{x \in \Omega} (x - \mu) (x - \mu)^T \mathrm{d}x, \tag{1}$$

$$\Sigma = \begin{bmatrix} a \ c \\ c \ b \end{bmatrix} = R_{\theta} \begin{bmatrix} a' \ 0 \\ 0 \ b' \end{bmatrix} R_{\theta}^{T} = \begin{bmatrix} a' \cos^2 \theta + b' \sin^2 \theta & \frac{1}{2} (a' - b') \sin 2\theta \\ \frac{1}{2} (a' - b') \sin 2\theta & a' \sin^2 \theta + b' \cos^2 \theta \end{bmatrix},$$
(2)

• ProbloU reduces to a differentiable closed-form expression (with Bhattacharyya Coefficient coefficient with Hellinger distance) that can be used as a localization loss term.

Probabilistic Intersection-over-Union for Training and Evaluation of Oriented Object Detectors

Jeffri Murrugarra-Llerena, Lucas N. Kirsten, Luis Felipe Zeni, Claudio R. Jung Federal University of Rio Grande do Sul¹

{jeffri.mllerena, lucasnkir, luis.zeni, crjung}@inf.ufrgs.br

Dataset Collection

FDDB (faces in the wild), and **DOTAv1** (satellite images of 15 classes).

- meters.

$$\mu_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \ \Sigma_1 = \begin{bmatrix} a_1 \ c_1 \\ c_1 \ b_1 \end{bmatrix},$$

obtain:

$$B_D = \frac{1}{8} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 - \mu_2) + \frac{1}{2} \ln \left(\frac{\det \Sigma}{\sqrt{\det \Sigma_1 \det \Sigma_2}} \right), \Sigma = \frac{1}{2} (\Sigma_1 + \Sigma_2).$$
 (4)

since:

$$B_C = e^{-B_D}, H_D(p,q) = \sqrt{1 - B_C(p,q)}, \text{ProbloU}(p,q) = 1 - H_D(p,q).$$
 (5)

• ProbloU ranges from 0 to 1, with the following properties:

	Implomentation	Scale	Metric	Hyper		
L033	implementation	Invariance	Properties	parameters		
r-loU	Hard	\checkmark	\checkmark			
Smooth ℓ_1	Easy	×	×			
GWD	Easy	×	×	$ au$, $f(\cdot)$		
KLD	Easy	\checkmark	×	$ au$, $f(\cdot)$		
ProbloU	Easy	\checkmark	\checkmark			

•We consider several OBB datasets: ICDAR2015 (text in the wild), HRSC2016 (satellite images of ships), UCAS-AOD (satellite images of car and airplanes),

(e) DOTAv1

Approach

• If we use a fuzzy object representation based on GBBs, we can calculate B_D (distance measure) present closed-form expressions in terms of the GBB para-

•Considering that $p \sim \mathcal{N}(\mu_1, \Sigma_1)$ and $q \sim \mathcal{N}(\mu_2, \Sigma_2)$ are Gaussian distributions with $\mu_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \ \Sigma_2 = \begin{bmatrix} a_2 c_2 \\ c_2 b_2 \end{bmatrix},$ (3)

•We use the MAP metric to compare our method with other SOTA methods.

	AP_{50}	AP_{60}	AP_{75}	AP_{85}	AP	AP ₅₀	AP_{60}	AP_{75}	AP_{85}	AP								
LOSS			CDAR2	015 (Re	etinane	t)	ICDAR2015 (R ³ Det)											
Smooth	ו ℓ_1	72.91	65.06	35.10	7.62	37.84	76.66	68.34	33.56	5.82	38.62							
GWD		73.49	65.83	32.94	7.71	37.55	76.60	68.42	35.44	7.47	39.34							
KLD		75.60	67.62	35.87	7.61	39.21	77.40	70.09	35.44	6.93	39.83							
Problo	U	76.64	69.02	36.39	8.91	40.14	77.54	70.67	35.89	6.49	40.03							
		ŀ	HRSC2	016 (Re	etinaNet	t)		HRSC	2016 (I	R ³ Det)	9 40.03 et) 7 37.89 5 52.56 27 61 12							
Smooth	ו ℓ_1	81.80	77.71	47.30	9.73	45.77	84.09	71.37	28.77	2.27	37.89							
GWD		80.48	76.67	48.55	14.73	47.11	89.06	86.69	61.01	8.65	52.56							
KLD		86.21	84.19	70.83	20.79	55.89	90.25	89.86	77.16	23.27	61.12							
r-loU		86.20	83.40	69.80	37.20	58.31	88.10	79.00	63.50	23.10	53.33							
Problo	U	87.03	85.22	71.49	24.67	56.79	90.23	90.02	78.46	25.42	61.65							
		L	JCAS-A	OD (Re	etinaNe	t)	FDDB (RetinaNet)											
Smooth	ו ℓ_1	95.97	90.27	56.30	15.66	54.62	98.09	95.39	83.67	63.68	72.73							
GWD		95.24	85.60	24.60	1.83	43.58	97.72	96.20	89.45	73.24	77.68							
KLD		96.46	92.51	43.37	6.45	51.09	97.56	96.25	90.37	76.04	79.01							
r-loU		93.50	87.70	56.50	17.10	54.09	97.80	97.10	91.30	77.10	79.90							
Problo	U	96.61	92.61	49.47	7.26	52.59	98.17	96.54	89.78	76.08	79.01							
	$\nabla \nabla \Delta v + v = v = i + a + a + a + a + a + a + a + a + a +$																	

Model	Loss	PL	BD	BR	GTF	SV	LV	SH	TC	BC	ST	SBF	RA	HA	SP	HC	AP_{50}
R-50 Retinanet	Smooth ℓ_1	88.78	71.40	43.85	62.32	67.00	55.70	71.49	90.08	78.94	79.81	54.81	62.62	54.54	66.74	48.23	66.43
	GWD	89.06	72.56	43.56	63.85	64.66	57.55	73.87	89.59	76.73	77.56	48.51	59.35	54.90	66.90	52.06	66.05
	KLD	89.58	74.99	44.95	64.62	74.38	73.41	84.33	89.94	78.14	78.36	53.08	61.95	63.46	66.44	52.17	69.99
	r-loU	88.07	73.30	38.13	61.81	78.51	70.38	85.39	90.75	81.43	83.12	47.66	61.51	58.79	69.66	55.21	69.58
	ProbloU	89.06	74.09	45.50	64.96	72.61	72.28	82.62	89.69	76.99	76.35	54.43	61.77	63.73	67.27	53.61	69.66
R-50 R ³ Det	Smooth ℓ_1	89.16	75.61	45.11	61.39	76.40	72.05	83.81	89.75	81.16	82.19	58.75	61.37	55.95	67.01	44.13	69.59
	GWD	89.57	76.67	45.80	58.69	76.44	74.92	86.03	89.41	80.03	82.28	51.03	60.07	54.26	66.53	54.45	69.74
	KLD	88.87	75.92	43.20	64.96	75.20	72.53	84.53	90.09	75.78	80.10	48.83	60.71	62.94	63.58	56.32	69.57
	r-loU	87.63	76.35	48.15	58.99	78.91	79.22	87.38	90.81	79.90	83.27	48.86	63.00	64.51	69.42	58.76	71.68
	ProbloU	89.06	77.81	46.19	64.26	76.27	79.05	86.35	89.96	79.18	82.72	55.23	63.52	59.16	66.52	49.64	70.86

- or better than GWD and KLD
- parameter
- volumetric object detection.

Experiments

• For DOTAv1 we use its evaluation server (only AP50).

Contributions

•Our localization loss function ProbloU presents better **results** than the popular smooth ℓ_1 loss and competitive

•Note that distances such as GWD and KLD perform poorly as localization terms, and require empirical non-linear mappings with an additional hyper-

As future work, we explore a 3D version of the GBB for

