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Introduction

¢ Continual learning enables machine learning models to adapt to new data without for-

getting previous knowledge and revisiting all past samples, which is crucial for applica-
tions like diabetic retinopathy detection.

¢ In this paper, we introduce a framework that gets LLM-generated descriptions and
zero-shot clustering to improve Experience Replay on new tasks.

e Our method combines a strategic experience replay designed to learn from multiple

tasks whilst retaining a good performance and protecting data privacy.

Method

Our method uses a LLM to generate descriptions d; for each image x;, using metadata
m; and y; for initial domain learning in Task O (supervised phase). These descriptions un-
derpin unsupervised zero-shot clustering, forming |{y;}| clusters. Key points from these
clusters are buffered for replay (¢;). A multi-head classifier leverages this buffer in an Ex-
perience Replay strategy, learning the pertinent head / for predictions y, thus preserving
knowledge across successive tasks (unsupervised phase).
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Inference (for Task 1, ..., Task N)

To improve continual learning in dia-

betic retinopathy detection, we com-
bine LLM-generated descriptions and

zero-shot clustering to obtain better
points to replay.
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Dataset description: three tasks for continual learning.

Task O Task 1 Task 2

Fundus images representing different tasks with varying

Image quality and conditions. From left to right: Task O
shows a fundus photograph with uniform image quality;
Task 1 is an image with some variation in lighting; Task 2
displays an image with added Gaussian noise to simulate
a challenging imaging condition.

Results and Conclusion
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Average AMCA improvement using EWC strategy for diabetic
retinopathy detection.

e Our approach significantly improves Average Mean Class Ac-
curacy (AMCA) across various continual learning strategies.

e The results show consistent enhancement in Naive, EWC, LwF,
and GEM strategies, even with fewer samples per class.

e This framework is particularly effective for diabetic retinopa-
thy detection, showcasing its potential in practical applica-
tions.

e Future work should focus on scalability, privacy considera-

tions, and further evaluations in clinical settings to ensure ro-

bust performance and ethical compliance.
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