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Introduction

•Continual learning enables machine learning models to adapt to new data without for-
getting previous knowledge and revisiting all past samples, which is crucial for applica-
tions like diabetic retinopathy detection.

• In this paper, we introduce a framework that gets LLM-generated descriptions and
zero-shot clustering to improve Experience Replay on new tasks.

•Our method combines a strategic experience replay designed to learn from multiple
tasks whilst retaining a good performance and protecting data privacy.

Method
Our method uses a LLM to generate descriptions di for each image xi , using metadata
mi and yi for initial domain learning in Task 0 (supervised phase). These descriptions un-
derpin unsupervised zero-shot clustering, forming |{yi}| clusters. Key points from these
clusters are buffered for replay (ei ). Amulti-head classifier leverages this buffer in an Ex-
perience Replay strategy, learning the pertinent head i for predictions y , thus preserving
knowledge across successive tasks (unsupervised phase).
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To improve continual learning in dia-
betic retinopathy detection, we com-bine LLM-generated descriptions and
zero-shot clustering to obtain better
points to replay.
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Dataset description: three tasks for continual learning.

Task 0 Task 1 Task 2

Fundus images representing different tasks with varying
image quality and conditions. From left to right: Task 0
shows a fundus photograph with uniform image quality;
Task 1 is an image with some variation in lighting; Task 2
displays an imagewith addedGaussian noise to simulate
a challenging imaging condition.

Results and Conclusion
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Average AMCA improvement using EWC strategy for diabetic
retinopathy detection.
•Our approach significantly improves Average Mean Class Ac-
curacy (AMCA) across various continual learning strategies.

•The results show consistent enhancement inNaive, EWC, LwF,
and GEM strategies, even with fewer samples per class.

•This framework is particularly effective for diabetic retinopa-
thy detection, showcasing its potential in practical applica-
tions.

•Future work should focus on scalability, privacy considera-
tions, and further evaluations in clinical settings to ensure ro-
bust performance and ethical compliance.


