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Neural Implicit Morphing of Face Images
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Loss ablations and final remarks

Each loss term plays a part in the warping results. Eliminating constraints by
setting 1,, 4, 4; = 0, lead to interesting effects.

Poisson and generative blendings
We investigate the use of smooth neural networks for morphing face : 9 9

images regularized by the thin-plate energy. For this, we model the time as

a parameter and disentangle deformation from blending.
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We propose a Poisson blending where we align Jac(.¥) with a vector field
U, defined in terms of Jac(.7;). We optimize -

« 7/ is responsible for morphing continuity.

Neural Morphing Primer

A morphing between faces consists of a warping 7" of their domains for
feature alignment and blending of the resulting warped faces.
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We parametrize the warping by a network 7 : R? X R — R and train it using
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Thin-plate constraint T
I = [ IHess (T)||%dxdt «
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Finally, we blend the warped images .¥ ( - , 1) to define the morphing .#.

M = [||Jac(y) — Ul||*dxdt + J (F — I*)dxdt
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Let & and & be encoder and decoder
models. We embed the warped images %
in the latent space: () = %(Ji( - t)).
Then, we interpolate them using

(.0 =D((1 =B 1) + 1B,(1))

Faces with different gender and ethnicity
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Faces w/o full
correspondence,

m e.g. the smile
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Faces w/
occlusion, e.g.
the eyes.

source linear+ Poisson blending

generative blending target

« 9 is crucial for landmark matching.

« J minimizes spacial distortions and

Without it, there is no warping.

regularizes point trajectories, ensuring a
not-too-strong non-linearity.

Our method handles pose
variations gracefully. We may
use generative methods for
blending.

Generative methods demand
aligned faces. Minor misalignments
lead to mismatching.

DET MorDeephy
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Blending impacts morphing
detection. Our warping+diffAE
blending is comparable to pure
diffAE, followed by StyleGAN3 and
ours+S.Mix. Lastly classical
warping and ours+(S.Clone/linear)
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Non-linear warping leads to
smoother alignment. Especially
noticeable on videos




