

Neural Implicit Morphing of Face Images

We investigate the use of **smooth** neural networks for morphing face images regularized by the thin-plate energy. For this, we model the time as a parameter and **disentangle** deformation from blending.

Neural Morphing Primer

A morphing between **faces** consists of a **warping** T of their domains for feature alignment and **blending** of the resulting **warped faces**.

t = 0

at 1

t = 1

We parametrize the **warping** by a network $T : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ and train it using $\mathscr{L} = \lambda_1 \mathscr{W} + \lambda_2 \mathscr{D} + \lambda_3 \mathscr{T}$

Finally, we blend the warped images $\mathcal{F}_i(\cdot, t)$ to define the morphing \mathcal{F}_i .

Poisson and generative blendings

$$\mathcal{M} = \int_{\Omega} \|\mathsf{Jac}(\mathcal{I}) - U\|^2 dx dt + \int_{S-\Omega} (\mathcal{I} - \mathcal{I}^*)^2 dx dt$$

Let ${\mathscr E}$ and ${\mathscr D}$ be models. We embe in the latent space Then, we interpole $\mathcal{J}_{i}(\cdot,t) = \mathcal{D}((1$

Faces w/ occlusion, e.g. the eyes.

Guilherme Schardong, Tiago Novello, Hallison Paz, Iurii Medvedev, Vinícius da Silva, Luiz Velho, Nuno Gonçalves

 $U = \mathsf{Jac}(\mathscr{F}_1)$

Poisson blending for feature transfer

t = 1

We propose a *Poisson blending* where we align $Jac(\mathcal{I})$ with a vector field

t = 0

U, defined in terms of $Jac(\mathcal{I}_i)$. We optimize

encoder and decoder
ed the warped images
$$\mathscr{F}_i$$

e: $\mathscr{C}_i(t) = \mathscr{C}(\mathscr{F}_i(\cdot, t))$.
late them using
 $(1-t)\mathscr{C}_0(t) + t\mathscr{C}_1(t))$

Faces with different gender and ethnicity

linear+ Poisson blending

target

Faces w/o full

e.g. the smile

correspondence,

Loss ablations and final remarks

setting $\lambda_1, \lambda_1, \lambda_1 = 0$, lead to interesting effects.

- *W* is responsible for morphing continuity.
- \mathcal{D} is crucial for landmark matching. Without it, there is no warping.
- \mathcal{T} minimizes spacial distortions and regularizes point trajectories, ensuring a not-too-strong non-linearity.

Generative methods demand aligned faces. Minor misalignments lead to mismatching.

Non-linear warping leads to smoother alignment. Especially noticeable on videos

Each loss term plays a part in the warping results. Eliminating constraints by

Our method handles pose variations gracefully. We may use generative methods for blending.

no alignment

FFHQ

Ours

Blending impacts morphing detection. Our warping+diffAE blending is comparable to pure diffAE, followed by StyleGAN3 and ours+S.Mix. Lastly classical warping and ours+(S.Clone/linear)

