

Attention Modules Improve Efficient Anomaly Localization for Industrial Inspection in the Wild

André Luiz Vieira e Silva¹, Felipe Battisti¹, Veronica Teichrieb¹, Francisco Simões^{1 2}

¹Voxar Labs, Centro de Informática, UFPE, Recife, Brazil ²Visual Computing Lab, DC, UFRPE, Recife, Brazil {albvs, fmb3, vt, fpms}@cin.ufpe.br

Hypothesis

Attention modules can boost anomaly detection methods in the wild, not just image-wise as shown in [1], but also pixel-wise, increasing the model's anomaly localization capabilities.

Proposed approach: Attention modules

- Figure 1 shows the proposed combination of attention modules with EfficientAD to expand its application to anomaly detection and localization in the wild.
- For the other method, SimpleNet, we combine its backbone, ResNet-18, with attention blocks by placing them in the non-identity branch of each residual module, making the attention operations act before the summation with the identity branch, producing RN18-SENet and RN18-CBAM.

Figure 1. Attention-enhanced EfficientAD. The network architecture of the proposed version of EfficientAD's student network.

InsPLAD-seg dataset:

Proposed dataset: InsPLAD-seg

(a) A normal Glass Insulator.

anomalous Glass Insulator.

Insulator anomaly mask.

(b) A normal Lightning Rod Suspension.

anomalous (e) Lightning Rod Susp.

Lightning Rod (h) Susp. anomaly mask.

(c) A normal Vari-grip image.

(f) An anomalous Varigrip.

Vari-grip anomaly mask.

Figure 2. Samples of normal and anomalous objects from InsPLAD-seg, with their respective defect masks for the anomalous ones.

Results

(a) Glass Insulator w/ missing cap

(c) Glass Insulator anomaly map

(b) Vari-grip with rust spots

(d) Vari-grip anomaly map

Figure 3. Anomalous objects (inputs) with their respective predicted anomaly masks (outputs).

Category	SimpleNet (RN18)	SimpleNet (RN18-SENet)	SimpleNet (RN18-CBAM)	EfficientAD (RN18)	EfficientAD (RN18-SENet)	EfficientAD (RN18-CBAM)
Glass Insulator (missing cap)	58.20	59.40	53.50	49.48	58.50	50.20
Lightning Rod Suspension (corrosion)	59.46	54.44	70.10	43.74	42.01	44.65
Vari-Grip (corrosion)	62.80	52.20	60.00	49.45	46.45	47.91
Average AUROC	60.13	55.35	61.20	47.56	48.99	47.59

Table 1. AUPRO (pixel-level). Bold: best average results. Underlined: the second-best results

Contributions

- We propose InsPLAD-seg, which is, to the best of our knowledge, the first real-world dataset for industrial inspection in the wild with pixel-level annotations.
- show that combining attention modules with real-time state-of-the-art anomaly detection methods improves anomaly detection (image-level) and localization (pixel-level) in the wild.