

Michigan Tech

Highlights

- Introduced MaSA-UNet, a novel DL architecture for skin lesion segmentation.
- Combines Manhattan Self-Attention UNet with Weighted Composed Loss (WCL).
- Integrates bidirectional Manhattan Self-Attention and varied loss functions to improve segmentation performance.

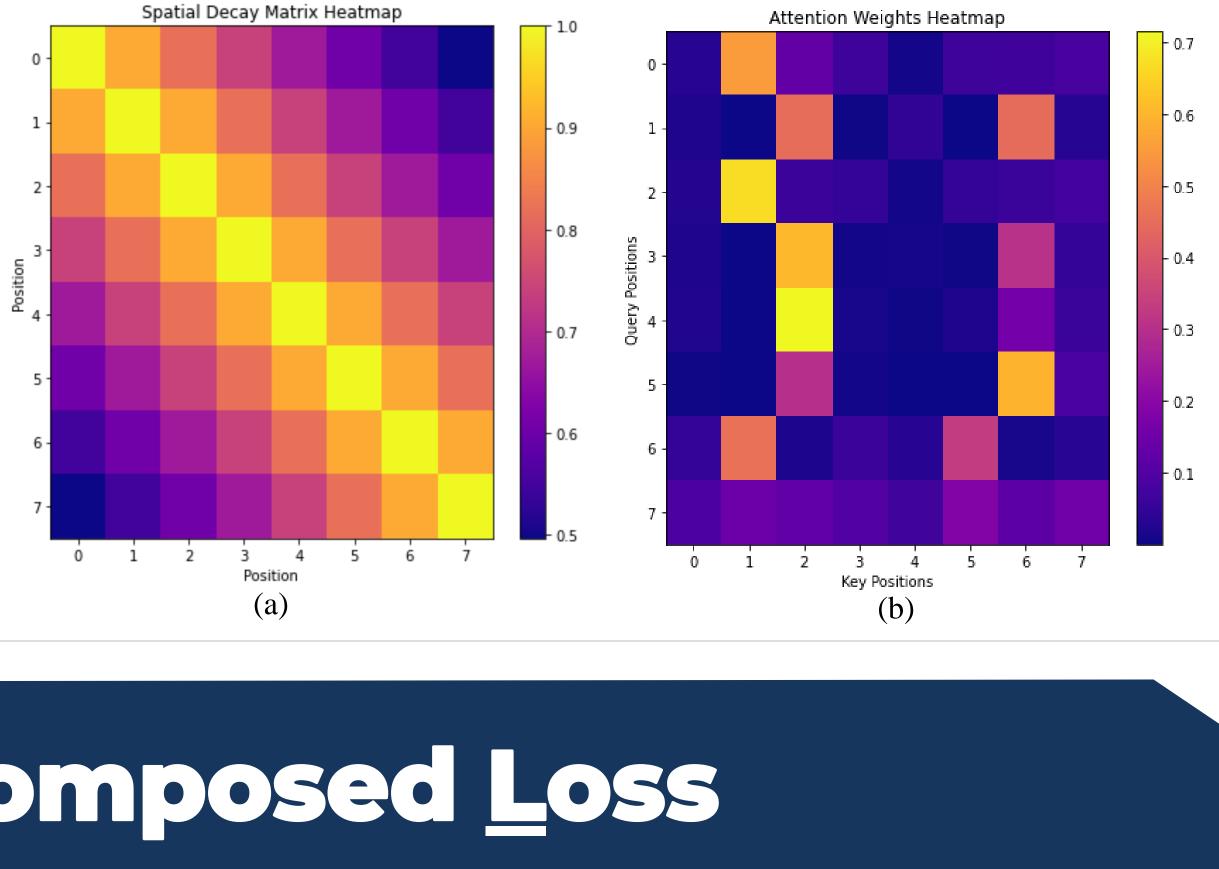
Manhattan Self-Attention

- Introduced by Fan et al. and inspired by the Retentive Network.
- Novel approach to enhance efficiency and performance of attention-based models.
- Reduces computational demands without sacrificing accuracy.
- Simplifies attention computation for efficient resource use.

 $BiRetention(X) = (QK^{T} \odot DBi)V$

where $D_{nm}^{Bi} = \gamma^{|n-m|}$

 $MaSA(X) = (Softmax(QK^T) \bigcirc D_{2d})V$



Weighted Composed Loss

- Optimization approach for improving biomedical image segmentation.
- Combines distinct loss functions with specific weights (λ) to effectively navigate the loss landscape.
- General expression:

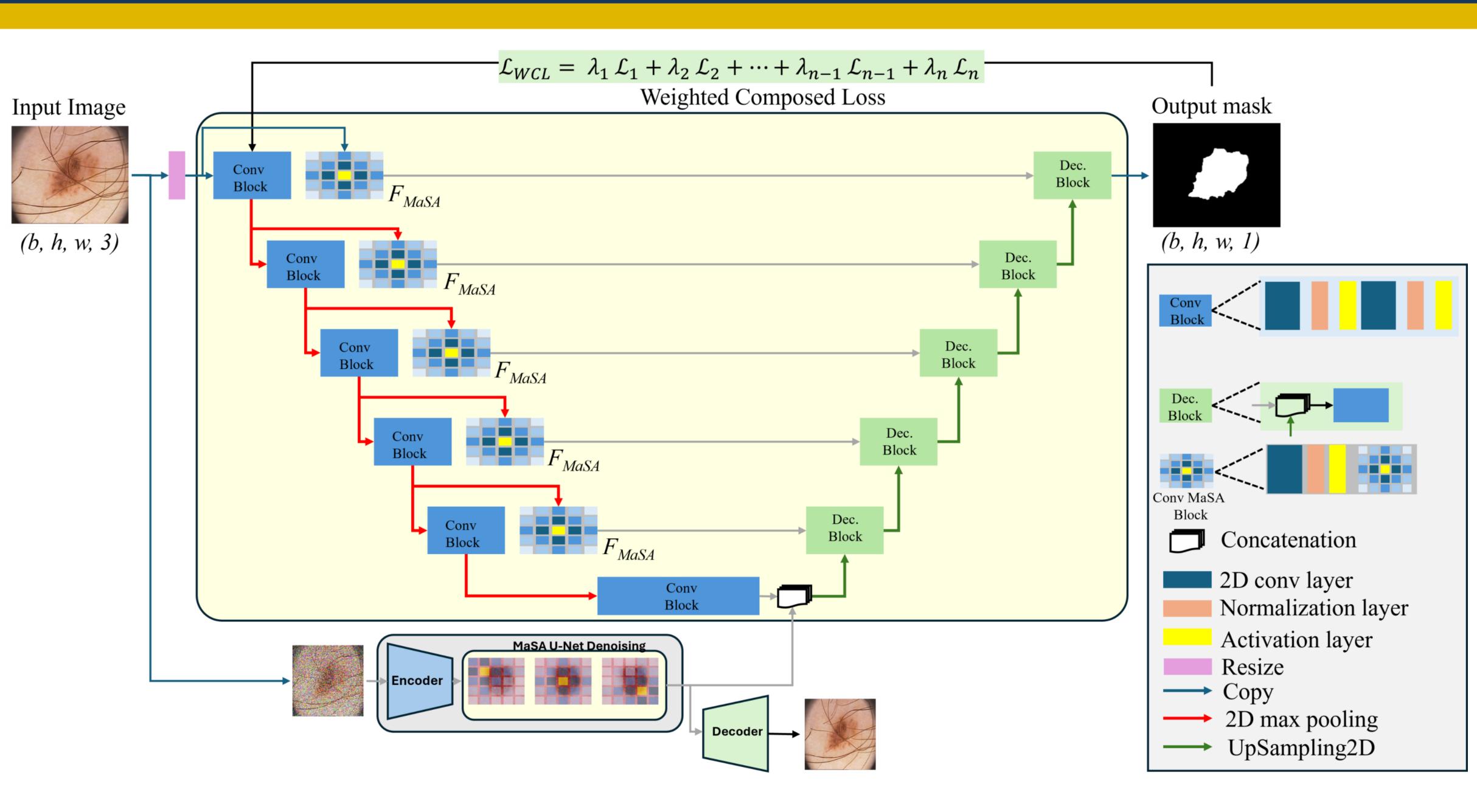
$$WCL_n = \sum_{i=1}^n \lambda_i \mathcal{L}_i$$

MaSA-UNet: Manhattan Self-Attention UNet with Weighted Composed Loss for **Skin Lesion Segmentation**

Abel A. Reyes¹, Sidike Paheding².

¹Dept. of Applied Computing, Michigan Technological University, Houghton, MI, USA ²Dept. of Computer Science and Engineering, Fairfield University, Fairfield, CT, USA

Methodology



- Integrates MaSA, self-supervised encoder pre-training, and WCL for skin lesion segmentation.
- MaSA enhances feature focus through spatial attention. Encoder pre-training refines pattern discernment in biomedical
- images.
- WCL combines loss functions with weighted optimization for the segmentation of medical images.
- Achieves competitive performance in skin lesion segmentation. The figure above illustrates the MaSA-UNet architecture design.

$$MaSA - UNet(X) = F_M$$

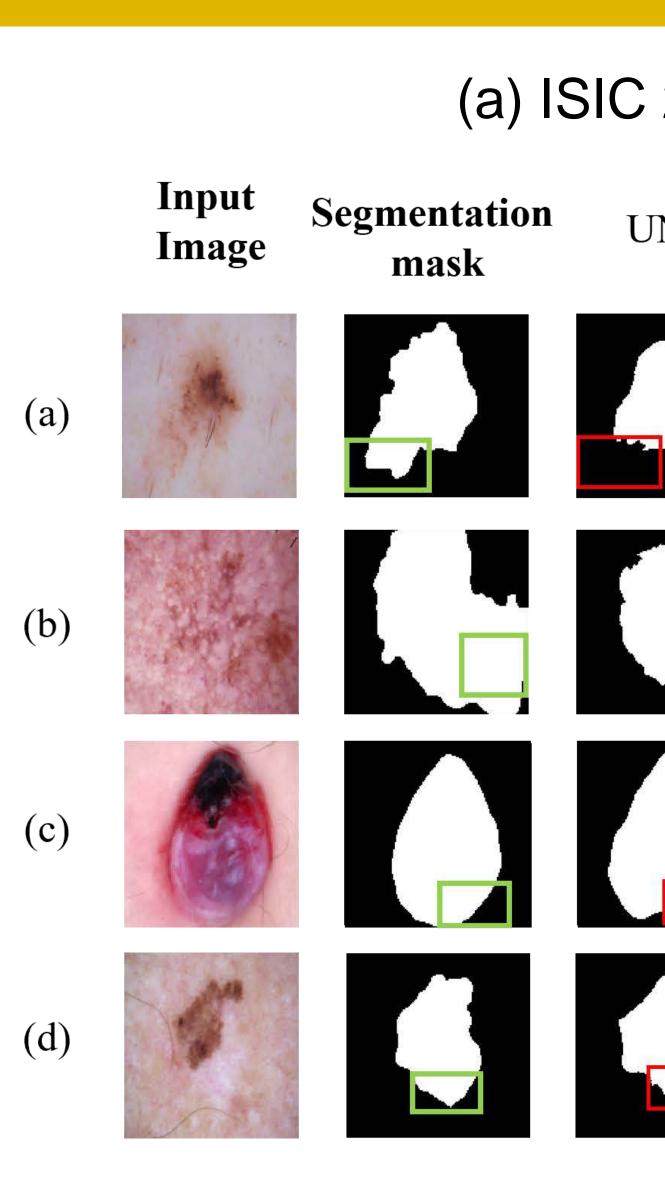
X: Input image, F_{MaSA} : MaSA within UNet, $E_{pre-trained}$: Pre-trained encoder.

$$\mathcal{L}_{WCL} = \sum_{i} \lambda_i \mathcal{L}_i (MaSA)$$

Y: Ground truth mask, \mathcal{L}_i : Individual loss functions, λ_i : Weight for each loss function.

 $MasA(E_{pre-trained}(X))$

-UNet(X), Y



Method	I
withiou	JS
UNet	0.81
UNet++	0.81
Attention Unet	0.81
CA-Net	0.80
SegFormer	-
Swin Unet	-
TransUNet	0.84
MaSA-UNet (ours)	0.86

metrics.

- image structure.

Benchmark Results

(a) ISIC 2016, (b) ISIC 2017, (c) ISIC 2018, and (d)PH²

Net	Unet++	Attention Unet	CA-Net	SegFormer	SwinUnet	TransUNet	MaSA Unet (ours)
		baring with			040		
ISIC 2016		ISIC 2		ISIC 2018		PH2	
S	DC	JS	DC	JS	DC	JS	DC
12	0.887	0.658	0.794	0.685	0.813	0.794	0.873
18	0.889	0.686	0.814	0.714	0.833	0.813	0.890
11	0.886	0.688	0.815	0.730	0.844	0.802	0.880

0.886	0.688	0.815	0.730	0.844	0.802	0.880
0.881	_	_	-	-	0.752	0.847
-	0.825	0.904	0.842	0.914	-	-
-	0.741	0.851	0.768	0.869	-	-
0.913	0.775	0.873	0.825	0.904	0.840	0.910
0.925	0.830	0.907	0.836	0.911	0.879	0.936

Conclusion

Demonstrated improved accuracy in Jaccard score and Dice coefficient

MaSA enables to capture of long-range feature relationships of the

Future work includes enhancing weight-search efficiency, exploring broader applications of Manhattan Self-Attention, and improving the interpretability of segmentation outcomes.

PRESENTER NAME: Abel A. Reyes

WORKSHOP DATE: June 18, 2024

WORKSHOP ABBREVIATION: LXCV

TAG / NOTES