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Abstract

Image and multimodal machine learning tasks are very
challenging to solve in the case of poorly distributed data.
In particular, data availability and privacy restrictions
exacerbate these hurdles in the medical domain. The
state of the art in image generation quality is held by
Latent Diffusion models, making them prime candidates for
tackling this problem. However, a few key issues still need
to be solved, such as the difficulty in generating data from
under-represented classes and a slow inference process.
To mitigate these issues, we propose a new method for
image augmentation in long-tailed data based on leveraging
the rich latent space of pre-trained Stable Diffusion
Models. We create a modified separable latent space to
mix head and tail class examples. We build this space via
Iterated Learning of underlying sparsified embeddings,
which we apply to task-specific saliency maps via a K-NN
approach. Code is available at https://github.
com / SugarFreeManatee / Feature - Space -
Augmentation-and-Iterated-Learning

1. Introduction

With the rise of large multimodal models [10, 22, 33] and
Latent Diffusion models [26, 30], both image analysis and
generation tasks have become dependent on the availability
and quality of balanced training data [3]. Due to the represen-
tation capabilities of these large models with several million,
or even billions of parameters, volumes of data in similar
magnitudes are required to avoid issues such as overfitting
or learning undesirable biases.

Obtaining extensive and well-distributed data is not an
option for several essential domains. For example, for the
analysis and generation of medical images, obtaining data
can be complex (as they are subject to patient confidential-
ity) and expensive (as they are tied to real-world medical
procedures and imaging exams) [11]. Moreover, it is often
impossible to obtain large, well-distributed samples of im-

ages corresponding to certain diseases and anomalies that,
while relevant, do not occur frequently [12].

Two avenues for solving the lack of data in these domains
are resampling and data augmentation. The former consists
of artificially oversampling examples from low-frequency
data while sometimes reducing the number of samples from
high-frequency data. The latter consists of generating syn-
thetic data for under-represented classes to even out the
distribution of a dataset.

Resampling techniques have been used with relative suc-
cess in several long-tailed problems, but can introduce un-
wanted biases into downstream tasks [31] and often lead to
overfitting [18].

Data augmentation is the natural response to these is-
sues. It represents a booming area of research comprising
several different families of algorithms, such as geometric
transformations (rotations, scaling, cropping, etc.), creation
of synthetic samples, mixing-based methods [2, 7, 35] do-
main translation-based methods [38] and generative methods
[23, 24].

We propose a new data augmentation method that manipu-
lates latent space representations of images from pre-trained
diffusion models, thereby generating new images to augment
under-represented classes. Specific features of the data are
selected via activation maps, which are then combined to pro-
duce images similar to the ones from actual data belonging
to long tail classes.

The combination of latent space representations is chal-
lenging to perform through naive methods due to interference
phenomena between the post-processing of the features. We
tackle this issue as a problem of compositional generaliza-
tion and apply the framework of iterated learning (IL) [28]
with sparsified embeddings to our target data augmentation
framework.

The main inspiration of IL comes from models of cultural
evolution [19] in which iterations of teacher-student interac-
tions encourage useful compression and the formation of a
”shared language” adapted to a task [4, 20, 28]. In particular,
recently [29] have obtained favorable results related to com-
posing distinct features when using sparsified state spaces,
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with a sparsification method called Simplicial Embedding
(SE) [21]. The concept entails that if, in an IL iteration, the
”teacher” version of the model is obliged to propagate a spar-
sified version of latent vectors to a new ”student” version
before training, it will impose an information bottleneck
across iterations, resulting in significant improvements at
downstream tasks that require compositional reasoning.

In short, we applied a new version of the IL+SE method
to map the already rich latent space of a pre-trained Stable
Diffusion Model [30] using task-specific activation masks
[8]. We propose mixing existing points in this sparse latent
space to achieve better fusion at the feature level.

2. Related Work

As previously mentioned, several data augmentation tech-
niques have been used recently; see [34] for a review. Of the
methods described, the most relevant to this work are Image
Mixing and Deep Generative Model approaches.

2.1. Image mixing

Image mixing generally consists of creating new data points
by combining two or more existing ones. MixUp[36] and
SMOTE[7] utilize convex combinations of existing data to
create new samples, with SMOTE selecting the same class
neighbors as pairs. CutMix[35] randomly samples from the
base dataset and removes patches from an image to replace
with a patch from another. These methods can also be per-
formed in the feature space.

The main problems of these methods are that they fail
to produce novel, realistic samples and lack consistency in
preserving labels before and after augmentation. We aim
to solve the first issue by leveraging the latent space of a
pre-trained stable diffusion model. For the second issue, we
attempt to solve the problem using saliency methods and a
separable sparse latent space.

2.2. Deep Generative Models

Approaches based on generative models sample new training
examples through model inference. GANs [14] are the most
popular generative framework for data augmentation due
to their fast inference and realistic generation [5]. However,
GANs are widely known to be unstable at training time, and
are prone to mode collapse [37].

Latent Diffusion Models [30] have long surpassed GANs
in image generation quality [9], and off-the-shelf models
have been used to significant effect in data augmentation
[27, 32]. However, Diffusion Models generally suffer from
slow inference speed and quality degeneration with long-
tailed data [27]. To address these issues, we work within a
modified sparse version of the rich latent space defined by a
trained Stable Diffusion Model, to mix existing data points
instead of generating new ones from scratch. By doing this,

Figure 1. Proposed method: Stage 1 (Iterated training), iteratively
train a student network Si to imitate a frozen teacher network Ti,
which corresponds to the student network of the previous iteration
Si−1 in mapping the original latent vectors Z to a semantically
separable sparse domain Zs. Also, jointly train said student with a
classifier C and a decoder D to classify and map vectors from the
sparse domain back to the original domain. In Stage 2 (CAM gen-
eration), we use EigenCAM to generate class activation maps (Mi

for classes I in [1, k]) for each vector, using the classifier trained in
Stage 1. Finally, in stage 3 (Inference), we find a head class near
neighbor Zs

h for each tail class vector Zs
t , and we combine them us-

ing their respective Class Activation Maps (CAM) as masks, taking
the top activations from the tail vector and the bottom activations
from the head vector. Finally, we combine these activations and
pass them through D to generate a new tail class vector.

we can create high-quality samples with very few (if any)
diffusion inference steps.

3. Method
Our proposed method, shown in Figure 1, consists of three
stages: (i) iterated training, (ii) class activation map gener-
ation, and (iii) inference. Note that each stage is applied to
the latent vectors produced by a pre-trained Latent Diffusion
Model, and not to the images themselves.

3.1. Iterated training

In this stage, we learn a translation from the diffusion latent
space to a sparse high dimensional representation [21], while
training a convolutional classifier for this space.

To do this, we implement a student-teacher [1] training
regime, which iteratively runs through two phases: imitation
and interaction.

We train a student network Si : θ × Z → Zs
S during the
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Figure 2. Fusion process applied to an image from the tail class
Tortuous Aorta (a.1) and one of its neighbor images from the head
class Atelectasis (b.1). (a.2) and (b.2) are channelwise Maximum
Intensity Projections of the sparse vectors obtained from (a.1) and
(b.1) respectively. In (a.3) and (b.3), we use EigenCAM to find
attention maps for each sparse vector and define binary masks
(yellow is one and dark purple is zero) using τh = τl = 0, 4 as
thresholds. We combine the masked sparse vectors into (c) and
decode the vector into a fused image (d). Finally, we apply five
inference steps in (e) to obtain a less noisy image.

imitation phase from scratch. This network transforms latent
vectors Z ⊆ RH×W×C into sparse high dimensional vectors
Zs
S ⊆ RH×W×C′

, with C < C ′. We enforce sparsity by
applying a channel-wise softmax to these output vectors, as
follows:

zSijk :=
exp(Si(zijk))∑C′

k̂=1 exp(Si(zijk̂))
. (1)

We train Si to imitate a teacher network Ti, which is the stu-
dent of the previous iteration, Ti = Si−1. Instead of imitat-
ing Ti directly, we use the channel-wise probabilities coded
in Ti(z

S) to sample a binary vector zSb , where each spatial
coordinate is a one-hot vector of dimension C ′. Minimizing
the imitation loss then becomes a multilabel classification
problem:

LI = BCE(zSb , Si(z
S)) (2)

During the interaction phase, we minimize losses related to
two other networks. First, we aim to make the sparse vectors
good representations of the original latent vectors. To this

end, we jointly train a network D : θ × Z ′ → Z with Si, to
minimize the reconstruction loss:

LR = MSE(z,D(Si(zs)). (3)

Our objective entails ensuring that the sparse vectors are
easily separable in their respective image classes; with this
in mind, we trained a classifier C : θ×X ′ → Y to minimize
the multilabel classification loss:

LC = (y, C(Si(z))). (4)

We couple the two losses via a new hyperparameter λ, and
the interaction phase translates into the optimization:

min
θSi

,θD,θC
Ez,y∈Z [λLR + (1− λ)LC ]. (5)

3.2. Class Activation Map Generation

In this stage, we use the classifier C from the previous stage
to generate simple and interpretable activation maps for each
class c ∈ K, to select relevant or non-relevant coordinates
for classification as c.

First, based on the classifier C, we define class activation
maps Mc ⊆ {0, 1}H×W for every sparse vector zs ∈ Zs

and every class c ∈ K, where Mc ≈ 1 defines which spatial
coordinates of the sparse vectors are important for classifi-
cation as class c. The CAMs are generated with EigenCAM
[25], which is adapted to the task because it does not require
correct classification to generate attention maps.

Next, following [8], we separate class-specific and class-
generic features by a threshold method, as follows. With
upper threshold value τh < 1 and lower value τl > 0, set

MS
c := sgn(Mc − τh) MG

c := 1− sgn(τl −Mc), (6)

whose interpretation is that MS
c contains coordinates of zs

relevant to classify the vector as c, while MG
c contains non-

relevant coordinates.

3.3. Inference

In this stage, we generate new samples from tail classes. Let
H and T be sets of head and tail classes. We first find the
head class Hc of highest confusion for a given tail class, pro-
vided by the highest estimated value index in the C classifier
prediction for the head classes. We then sample an element
for each tail class example from their highest confusion head
class.

A possible naive approach would have been to create a
fused vector by adding the class-specific tail features with
the class generic head features, using their respective masks.
However, note that the class-specific mask for the first vector
and the class-generic mask for the second vector might over-
lap or leave empty spaces in the final vector. For these uncov-
ered and overlapping parts of the vectors, it is not clear how



to update their values in an interpretable manner. To solve
this, whenever both masks MS

c ,M
G
c are 0 or both are 1, we

choose which vector to use at random, introducing a random
mask MR. The values of the maps also need to broadcasted
across C ′ channels as follows: for M ∈ {0, 1}H×W , let
M ∈ {0, 1}H×W×C′

be the tensor given by repeating C ′

times the values of M . Then, define

MR ∼ [Unif({0, 1})]H×W
, (7)

zsR := zst ⊙MR + zsh(1−MR), (8)

z̃sR := zsR ⊙ (1−MG
c −MS

c + 2MG
c ⊙MS

c ), (9)

z̃st := zst ⊙ (MS
c ⊙ (1−MG

c )), (10)

z̃sh := zsh ⊙ (MG
c ⊙ (1−MS

c )), (11)
zsF := z̃sh + z̃st + z̃sR. (12)

Having defined the sparse fusion vector zsF , we translate it
back into the base latent space Z using the decoder network
D trained in stage 1:

zF := D(zsF ) (13)

Our results suggest that, for fast data augmentation, this
approach tends to suffice; however, for high-fidelity image
generation, an extra step is added, as this vector does not
necessarily lie within the pre-trained VAE domain. Using the
frozen pre-trained Unet U∗ from the Stable Diffusion Model,
conditioned on the class names associated with the tail class
image, the vector can be translated into the VAE domain.
We take N/d denoising steps, where N is the number of
inference steps in the original Stable Diffusion model, and
d ∈ [1, N ].

4. Results
The method was tested by generating tail classes of a sam-
pled version of MIMIC-CXR-LT 2023 [13, 16], a multilabel
multiclass long-tailed dataset of chest X-rays. Our reduced
sample version has only five head classes and five tail classes.

We compare our method with SMOTE [7] and Roent-
GEN [6], which is used as our Stable Diffusion Model, on
image generation quality using FID [15]. We also evaluate
using no extra inference steps, one step, and five. We train
a Densenet121 [17] model using each augmented dataset
to classify our sample train set and test it on a separate test
set from the same challenge. We evaluate the Mean Aver-
age Precision for head and tail classes for each described
method and compare them with a classifier trained on our
unaugmented sample set. As Tab. 1 shows, we obtain lower
image quality than the other methods when using 0 and 1
inference steps. However, we get a lower FID with only five
inference steps than RoentGEN using 75 inference steps.
Unexpectedly, all tested augmentation methods have worse
results when used to augment a classifier than the baseline.

Model Avg Tail FID↓Head mAP↑Tail mAP↑
Baseline - 0.618 0.155

SMOTE 171.864 0.578 0.151
RoentGEN@75 138.963 0.618 0.152
Ours@0 191.873 0.607 0.152
Ours@1 191.646 0.595 0.143
Ours@5 130.110 0.595 0.144

Table 1. Results measuring FID [15] and Mean Average Precision
for tail and head classes. We use 75 inference steps for RoentGEN,
following [6], and 0, 1, and 5 steps for our method.

One possible explanation for this behavior is how labels are
assigned to new data: As a multi-labeled classification prob-
lem, our approach assigns labels from the corresponding
head and tail images to the fused latent vectors. However,
this may introduce biases that lead to misclassification of real
samples. Furthermore, despite the good FID performance,
our method performs noticeably worse in the classification
task (mAP). This might be a consequence of the diffusion
process, which does not guarantee maintaining the existing
labels in the fused latent vector.

5. Conclusion
In this work, we present a novel method for data augmen-
tation and data generation on long-tailed datasets. By lever-
aging pre-trained Latent Diffusion Models, compositional
learning, and saliency methods, we generate new examples
of underrepresented classes. We give a detailed mathemati-
cal description of our method and run experiments on image
generation and data augmentation in the medical domain for
multi-label classification using a small subset of MIMIC-
CXR-LT [13, 16].

Using the Latent Diffusion Model RoentGEN [6] to run
five inference steps on our generated vectors, we obtain
competitive results in image generation quality. Counter-
intuitively, we found that using more inference steps nega-
tively impact the downstream image classification when us-
ing our augmented data. This might be a consequence of our
approach not necessarily maintaining data labels throughout
the diffusion process.

In future steps, we plan to experiment with larger datasets
and different techniques for assigning labels and compare our
results with a broader range of generation and augmentation
methods across a more comprehensive range of tasks.
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