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Abstract

Image caption generation textually summarizes the vi-
sual content of an image. This task has gained popularity at
the turning point of computer vision (CV) and natural lan-
guage processing (NLP). Images used to train image cap-
tioning models may contain sensitive data that should be
confidential, such as faces, personal characteristics, docu-
ments, children, etc. This work focuses on protecting pri-
vacy in the image captioning task, directly from the image
acquisition stage. For this, a refractive lens was designed
to ensure privacy using an end-to-end deep learning-based
optimization approach. The designed lens blurs sensitive
visual attributes in the acquired image while extracting es-
sential features to generate captions even from highly dis-
torted images. The image caption network implements two
long short-term memory networks (LSTMs) with an atten-
tion module in between to ensure high-quality captions.
This method was tested and validated through simulations
in the COCO dataset. The results showed a better bal-
ance between privacy and usability compared to traditional
methods that do not consider privacy.

1. Introduction
Image captioning is the process of creating short informa-
tive texts for images, using natural language, that relates the
visual content and context of an image. This process facil-
itates image search and simplifies content summarizing, it
empowers virtual assistants and artificial intelligence sys-
tems by enriching educational materials [6] and improving
communication in social networks [14, 22]. The image cap-
tioning task is considered significantly more complex than
image classification or object recognition [26], since it re-
quires describing not only the objects present, but also their
relationship, attributes, and associated actions or activities.

Image captioning has been addressed using various tech-
niques including convolutional neural networks (CNNs) to
extract features from images, jointly with Long Short-Term

Memory (LSTM) Networks capable of processing entire se-
quences to generate word-by-word captions [1]. This ap-
proach has substantially improved the contextual relevance
and consistency of the generated captions [25, 28]. In addi-
tion, attention mechanisms have been integrated into these
models, allowing them to focus on specific regions of the
image [9]. The latter improves the quality of the captions
by making them more closely linked to the visual content.

In most computer vision (CV) tasks, images are used
to train deep neural networks (DNNs). However, avail-
able images may contain sensitive information, raising con-
cerns about the associated risks of improper exploitation
[15]. This has motivated privacy protection methods in dif-
ferent fields, such as healthcare [24], multimedia [29], so-
cial networking [13], and video surveillance [4]. Advances
in optics and algorithms [23] have led to the development
of privacy-preserving end-to-end systems for applications
such as human pose estimation [7] and action recognition
[8].

To generate privacy-preserving image captions, state-
of-the-art has reported an encryption framework[16]. Al-
though this method is effective for privacy, the accuracy
of captioning is not as good as non-privacy-preserving ap-
proaches. An alternative approach [20], focusing on dietary
intake images, trains a DNN using images in which peo-
ple’s faces have been previously masked to avoid direct use
by nutritionists. These approaches operate on already ac-
quired images, and therefore may still present vulnerabili-
ties between the acquisition and processing stages. We pro-
pose to address this problem through image acquisition.

There exist different strategies for privacy protection
during image acquisition, including defocus techniques that
provide privacy restricted by the size of the camera sensor
[18, 19]. Similarly, [7, 8] developed a hardware-based pri-
vacy solution that involved the design of a refractive lens
that selectively blurs sensitive information while preserv-
ing the functionality needed for gesture recognition and hu-
man pose estimation. Inspired by these works, we propose
to design a specialized optical lens that integrates privacy
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Figure 1. Proposed end-to-end model. The optical encoder incorporates a camera with a refractive lens, which is parametrized by a linear
combination of Zernike polynomials. The decoder is formed by a convolutional feature extraction and an LSTM Network with attention,
which produces a caption from the private image.

preservation into the generation of image captions. In par-
ticular, we rely on LSTMs for reliable image captioning and
model the light propagation using Fourier optics, in an end-
to-end framework. This method is expected to enable more
effective privacy protection compared to existing methods,
as will be demonstrated through rigorous testing and com-
parison with other techniques.

2. Proposed Method
Our proposed model comprises two components. First, an
optical encoder consisting of a camera equipped with a re-
fractive lens trained for privacy protection, where a linear
combination of Zernike polynomials [17] is learned, as il-
lustrated in Fig. 1, promoting distorted images as the re-
sponse. This will obscure sensitive attributes such as per-
sonal objects, documents, and people’s faces within the
scene. The second component is a decoder module, which
learns to generate image captions from distorted images.
The decoder leverages a CNN to extract salient features,
which are then processed by two LSTM networks, with an
attention module in between. The two components work
end-to-end, allowing the learning of optical parameters by
back-propagating from the decoder to the optical layer.
2.1. Optical Encoder
Our encoder module is responsible for the image acquisi-
tion process, as shown in Fig. 1. As described earlier,
our strategy to promote privacy modifies the camera lens
by a learned refractive optical element. To facilitate the op-
timization of the camera lens, we employ a similar strategy
from prior studies [7, 8, 23], which develop a differentiable
module that takes into account the wave propagation and
phase modulation processes within the camera.

Assuming spatially incoherent light, we formulate the
wave-based image formation model following Fourier op-
tics and define the point spread function (PSF) in terms of
the lens surface profile parameters, which are learned. Har-
nessing the Fresnel approximation[5], we write the PSF as

Hλ(x
′, y′) = |F−1{F{Wλ(x, y)}Tλ(fx, fy)}|2, (1)

where Tλ(·) denotes the transfer function involving the
spatial frequencies (fx, fy) and the wavelength λ, the
spatial coordinates on the camera plane are denoted by
(x′, y′), and on the lens by (x, y). F{·} denotes the
two-dimensional Fourier transform. Wλ is defined as
Wλ(x, y) = tϕ(x, y)Uλ(x, y), with the wave field imme-
diately preceding the lens as Uλ(x, y) [23], and the phase
modulation tϕ(·) represented by tϕ(x, y) = ej 2πλ ϕ(x,y), ob-
tained from the lens surface profile ϕ =

∑q
j=1 αjZj , [7, 8]

where Zj represents the j-th Zernike polynomial in Noll
notation [17], and αj is the corresponding coefficient. Each
Zernike polynomial represents a specific wavefront aberra-
tion, and q denotes the total number of polynomials in the
linear combination. Combining these aberrations forms the
resulting surface profile, as shown at the bottom in Fig. 1.

Assuming the image formation is a shift-invariant convo-
lution between the original image and the PSF, the acquired
images for the RGB channels can be modeled as

X̂ℓ = Sℓ(Hλ ∗Xℓ) +Nℓ, (2)

where the subscript ℓ ∈ {R, G, B} indicates that operations
are performed independently for each channel. The variable
Xℓ ∈ R+w×h represents the underlying scene with w × h
pixels, and the matrix Hλ represents the discretized version
of the PSF in Eq. (1). The term Nℓ ∈ Rw×h corresponds
to the Gaussian noise present in the sensor. The function
Sℓ(·) : Rw×h → Rw×h denotes the camera response func-
tion, and ∗ represents the 2D convolution. Note that in our
optimization we want to learn the set of coefficients αj .

2.2. Decoder

2.2.1 Feature extraction. To preserve privacy, we train
our decoder to learn features directly from the distorted (pri-
vate) images acquired with our camera. Specifically, we
employ the ResNet101 CNN to extract a set of L feature
vectors V , denoted as V = {vi}Li=1, with vi ∈ RD.



2.2.2 Image Captioning Network. For the caption gen-
eration, we used a method [2] that combines an attention
LSTM and a language LSTM. The attention LSTM uses vi-
sual features to focus on relevant areas of the image, and
then, the language LSTM generates words sequentially.

Attention LSTM: The first LSTM network processes a
single feature vector v = 1

L

∑
i vi representing the entire

image. The input to the attention LSTM consists of the
previous output of the language LSTM, h2

t−1, concatenated
with v, and Πt, a one-hot encoding of the input word at time
step t. These inputs provide the maximum context regard-
ing the state of the language LSTM, the overall content of
the image, and the captions generated so far. The attention
LSTM can be written as

h1
t = LSTM([h2

t−1, v̄,EΠt],h
1
t−1), (3)

where superscript 1 denotes the first LSTM of the model.
The matrix E ∈ Rm×K is a word embedding matrix for a
vocabulary of size K.

Attention module: An attention module was used in-
between the two LSTMs, to focus on the most relevant in-
formation within the images. The attention module receives
h1
t and vi, and performs αt = softmax (at) with

at,i = wT
a tanh

(
W vavi +W hah

1
t

)
. (4)

The attended image feature is used as input for the language
LSTM, which is calculated as v̂t =

∑L
i=1 αt,ivi.

Language LSTM: The language LSTM receives as in-
put the attended image v̂t along with the output of the at-
tention LSTM h1

t as shown in Fig. 1, and operates as

h2
t = LSTM([v̂,h1

t ],h
2
t−1), (5)

where h2
t corresponds to the language LSTM network

denoted by the superscript 2. Finally, for each time
step t, a conditional probability distribution is com-
puted, applying the softmax function, for the current word
given the history of previous words, as p (yt | y1:t−1) =
softmax

(
W ph

2
t + bp

)
, where, (y1, ..., yT ) is a sequence

of words, W p ∈ RK×m are the learned weights, and
bp ∈ RK the biases. The total probability of a complete
sequence of words is calculated as the product of the condi-
tional distributions, p (y1:T ) =

∏T
t=1 p (yt | y1:t−1) .

2.2.3 Loss Function. Our loss function combines four
terms, Lp, Lce, Ld, and LH , chosen to increase optical dis-
tortion in the image acquisition, and to preserve the perfor-
mance of word generation in image captioning. The term
Lp represents the MSE between the original (undistorted)
image Xℓ and the captured (distorted) sensor image X̂ℓ.
This term aims to promote distortion by maximizing the dif-
ference between the two images via, Lp = 1− ∥X̂−X∥22.
Lce represents the multi-class cross-entropy loss, used to

Priv Model B-1 B-2 B-3 B-4 M C

%

BRNN [10] 64.2 45.1 30.3 20.1 19.5 66.6
NIC [25] 66.6 46.1 32.9 24.6 23.7 -

Hard Attn [28] 71.8 50.4 35.7 25.0 23.0 -
2PSC-w [3] 72.1 54.8 40.4 29.6 29.2 89.2
Proposed-w 73.2 56.7 43.4 33.3 29.0 101.2

"

2PSC [3] 68.9 51.3 37.3 27.0 28.1 88.5
Proposed 68.9 51.7 38.5 29.0 26.8 89.0
Defocus 67.3 49.5 35.5 25.5 26.8 81.1
Low-Res 61.6 42.7 29.1 19.9 23.3 58.8

Table 1. Bold results symbolize the best (highest), and underlined
results symbolize the second-best, per dataset.

guide the learning of the correct sequence of words for im-
age captioning. It compares the predicted probabilities y to
the ground truth caption g at each word c in the sequence of
length C, following

Lce =

C∑
c=1

log

(
exp(yc)

exp(
∑C

i=1 yi)

)
gc. (6)

Ld incorporates a double regularization to encourage the
model to attend every part of the distorted image, as in [28],
given by

Ld = − log(p(y | a)) + λ

L∑
i

(
1−

C∑
t

θti

)2

. (7)

LH performs a regularization on the PSF Hλ, promoting
the circular shape of the PSF by minimizing the values out-
side a circular mask M. LH is given by,

LH = ∥(Hλ ∗M)−Hλ∥F , (8)

where M is a binary matrix defined as,

Mij =

{
1, if (i− p)2 + (j − p)2 ≤ r2,

0, otherwise.
(9)

with the elements inside the circle set to 1 and the elements
outside set to 0. The purpose of M is to ensure a well-
centered PSF on the camera sensor, where p represents the
image center, while r denotes the expected PSF radius.

3. Experimental Results
We used the Common Objects in Context (COCO) 2014
dataset [12] for training, validation, and testing. To facili-
tate a meaningful comparison with our method, we incor-
porate concepts from existing privacy hardware-based ap-
proaches that involve the use of low-resolution cameras [21]
and cameras equipped with defocusing lenses [18] to en-
hance visual privacy protection. Further, we conduct stud-
ies to demonstrate the robustness to deconvolution of the
distorted images by attempting to recover the original im-
ages using two different models [11, 27].
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Figure 2. Qualitative results on two test set samples. Insets display
the SSIM and Meteor between the distorted and original images.

3.1. Qualitative Results

We performed a comparative analysis with two different
camera configurations. The first, referred to as the “defocus
lens”, shares the same optical architecture as our proposed
method, but only optimizes the 4th Zernike polynomial,
which induces defocus [17]. The second, so-called “low-
resolution” camera, is a conventional camera equipped with
a small sensor of 16 × 16 pixel dimensions. The results
of these alternative approaches are presented in Figure 2,
showing the original images along with their corresponding
ground truth captions, as well as the privacy-preserving im-
ages and their respective captions. To quantitatively assess
the level of degradation introduced by the different cameras
compared to the original image, we calculated the structural
similarity index measure (SSIM). The COCO test set re-
veals an average SSIM of 0 .48 ± 0 .12 . It is crucial to note
that, in all the approaches shown, the content of the im-
ages remains difficult to discern. Nonetheless, the proposed
method is the one that achieves the most accurate caption of
the scene, as expected, with the highest METEOR.

3.2. Quantitative Results

Table 1 presents the results in terms of the metrics Bleu-1
(B-1), (B-2), (B-3), (B-4), Meteor (M) and Cider (C) re-
spectively, which were used to evaluate the quality of cap-
tions in COCO dataset, the highest values being the best.
The employed study includes a comparison between the im-
plemented image captions model using original RGB im-
ages (denoted as “Proposed”) and other image captions ap-
proaches using focused RGB images [3, 10, 25, 28]. This
table also includes a quantitative evaluation of the privacy
methods discussed above: defocusing and low-resolution
cameras. In Table 1, the best results are indicated with bold-
face, while the second best results are underlined. As can
be seen from the table, the proposed approach with privacy
achieves the best balance between image distortion and cap-

Traditional Our Lens  DeblurGANV2Wiener Filter

Figure 3. Evaluation of the robustness of our lens-protected im-
ages against deconvolution attacks. Qualitative results show that
the identities of individuals cannot be recovered after applying
non-blind (Wiener) and blind (DeblurGANv2) deconvolution.

tion accuracy, effectively balancing high efficiency with ro-
bust privacy protection.

Robustness to Deconvolution. To further validate our ap-
proach, we investigate how robust our lens is against de-
convolution attacks. We consider both scenarios (blind and
non-blind), where the attacker either knows the camera’s
PSF, thus able to use Wiener deconvolution, or an extensive
collection of our private images, thus able to train a blind
deconvolution network, e.g. DeblurGANv2 [11]. For the
latter, we use 3,214 blurred images, partitioning into 2,103
for training and 1,111 for testing. Each distorted image was
associated with its non-distorted image. We followed the
same training strategy as in [8, 11].

We show some visual results from the testing set in Fig.
3. The reconstructed images exhibit average SSIM scores
of 0 .38 ± 0 .10 and 0 .40 ± 0 .11 for Wiener and Deblur-
GAN deconvolutions, respectively. As observed for both
scenarios (blind and non-blind deconvolution), our opti-
mized lens distorts enough to safeguard facial details, pre-
serving people’s anonymity.

4. Conclusion
We presented an end-to-end image caption generation
model based on LSTMs and an attention module, which in-
tegrates a refractive optical element in the image acquisi-
tion, to enhance privacy preservation by introducing a con-
trolled distortion. The approach does not only effectively
preserves the privacy of individuals, objects, and places de-
picted in the images, but also achieves optimal caption per-
formance in the COCO dataset, as demonstrated by high
scores on the metrics Bleu and Meteor. To validate the
robustness of the method, deconvolution attacks were at-
tempted to evaluate privacy preservation. The deconvolu-
tion results reinforce the idea that the method effectively
preserves privacy by preventing the recovery of sensitive
information from distorted images.
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