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Abstract

In recent years, there has been a growing interest in
training Neural Networks to approximate Unsigned Dis-
tance Fields (UDFs) for representing open surfaces in the
context of 3D reconstruction. However, UDFs are non-
differentiable at the zero level set which leads to signif-
icant errors in distances and gradients, generally result-
ing in fragmented and discontinuous surfaces. In this pa-
per, we propose to learn a hyperbolic scaling of the un-
signed distance field, which defines a new Eikonal problem
with distinct boundary conditions. This allows our formu-
lation to integrate seamlessly with state-of-the-art continu-
ously differentiable implicit neural representation networks,
largely applied in the literature to represent signed distance
fields. Our approach not only addresses the challenge of
open surface representation but also demonstrates signif-
icant improvement in reconstruction quality and training
performance. Moreover, the unlocked field’s differentiabil-
ity allows the accurate computation of essential topological
properties such as normal directions and curvatures, per-
vasive in downstream tasks such as rendering. Through ex-
tensive experiments, we validate our approach across vari-
ous data sets and against competitive baselines. The results
demonstrate enhanced accuracy and up to an order of mag-
nitude increase in speed compared to previous methods.

1. Introduction

Surface representation is a fundamental aspect in the
field of 3D geometry processing, with explicit methods such
as meshes, point clouds, and voxelized representations be-
ing traditional choices. Implicit surface representations, on
the other hand, have been an integral part of the graphics
pipeline for many decades. They encapsulate surfaces as the
zero-level set of a function, providing a compact and contin-
uous geometry representation. The novelty in recent years
has emerged from parameterizing these implicit functions
with Neural Networks (NNs), combining their learning ca-
pabilities with the advantages of implicit representations.

Signed Distance Functions (SDFs) have traditionally
been the chosen formulation for implicit surface represen-
tation [4, 7] due to their well-defined gradients and the ease
they offer for computing constructive solid geometry opera-
tions and mesh reconstruction. However, they are inherently
limited to closed surfaces, which poses a significant chal-
lenge for representing open surfaces with implicit methods.
This limitation arises from the inside/outside sign flip on the
zero level set, which is impossible to define for surfaces that
do not enclose a volume.

The advent of Unsigned Distance Functions (UDFs) ex-
tended representation capabilities to open surfaces. How-
ever, this advancement introduced a challenge: the non-
differentiable nature of the distance functions at the zero
level set. Such non-differentiability leads to inaccuracies in
distances and gradients learned by NNs, particularly near
the surface where precision is paramount. This paper tack-
les the challenge of representing open surfaces with neural
networks, focusing on a formulation that ensures the surface
continuity and smoothness.

2. Proposed Approach
2.1. Mathematical background

Methods addressing closed surfaces approach the learn-
ing of SDFs as finding the solution to a system of Par-
tial Differential Equations (PDEs) governed by the ho-
mogeneous Eikonal equation with Dirichlet and Neumann
boundary conditions. Although SDFs are not differen-
tiable at every point and represent only a weak solution
to the Eikonal equation, recent research has demonstrated
considerable success in solving this problem with continu-
ously differentiable implicit neural representation networks
[3, 5, 8, 10]. These architectures use periodic activations,
facilitating smoother optimization processes and improved
control over the solution’s gradient field. This is achievable
because locations where the signed distance lacks differen-
tiability are distant from the isosurface, hence the approx-
imation tends to be good in a close neighborhood of the
zero level set. In particular, these networks enable accu-
rate computation of critical topological properties, includ-
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Figure 1. In (a), view of different distance fields for a 2D slice of
a torus. Note the effect of hyperbolic scaling near the isosurface
(bottom). In (b), sign and gradient for each distance field f . In
signed distance, the gradient ∇f at the isosurface is equal to the
surface’s normal field nS (top). In unsigned distance, the gradi-
ent is undefined at the isosurface due to the change in orientation
(middle). Our maximum curvature field vectors v1 align with the
surface’s unoriented normals (bottom).

ing mean and Gaussian curvature [8]. This contrasts with
networks featuring piecewise linear activations, such as Re-
LUs, which have null second-order derivatives [10].

In the context of representing UDFs, these functions can-
not be a solution to the Eikonal equation both in the interior
and exterior regions of the surface, without losing differ-
entiability at the zero level set. This presents challenges
for continuously differentiable NNs in achieving satisfac-
tory outcomes, being that the approximation errors happen
at the isosurface where accuracy is paramount.

2.2. Problem statement

Our key insight is to overcome these challenges by re-
defining the unsigned distance field, particularly through the
application of a hyperbolic scaling. In light of this under-
standing, we propose to learn the parameters θ of a neural
network fθ with periodic activation functions [10] to ap-
proximate the function:

tS(x) = dS(x) tanh(αdS(x)), (1)

where dS is the unsigned euclidean distance to surface S;
and α is a constant value. The function tS is a differen-
tiable approximation of dS , whose zero level set is the sur-
face S. Fig. 1 (a) illustrates hyperbolic scaling’s quadratic
smoothing near the isosurface and the linear behavior in the
distance.

The scaling enables the application of continuously dif-
ferentiable implicit neural representation networks to solve
an Eikonal equation, while retaining the UDF’s open sur-
face representation capabilities. For this task, we aim to ad-
dress a heterogeneous Eikonal equation, for which we know
tS (Eq. 1) is a weak solution:

∥∇f∥ = ϕ
f|S = 0
∇f|S = 0

v1(f|S ) = ±nS

(2)

where ϕ is defined as the L2 norm of the gradient of Eq. 1,
formally:

ϕ(x) = tanh(αdS(x)) + αdS(x)(1− tanh2(αdS(x))). (3)

And function v1(f|S ) represents the principal curvature di-
rection of f at surface S. This coincides with the unitary
eigenvector associated with the highest eigenvalue of hes-
sian matrix Hfθ (s). This formula allows to compute surface
normals during inference and reconstruction, which is a key
difference with previous methods that relied on expensive
and imprecise numerical approximations.

2.3. Implicit function learning
Following the aforementioned definitions, our neural

networks are trained to minimize the following loss func-
tion:

L = λeLEikonal+λdLDirichlet+λnLNeumann+λgLMCurv , (4)

with λi constant weights controlling the relevance of each
term, defined as:

LEikonal =

∫
C
|∥∇fθ(x)∥ − ϕ(x)| dx

LDirichlet =

∫
S
|fθ(x)| dx

LNeumann =

∫
S
∥∇fθ(x)∥ dx

LMCurv =

∫
S
1− |v1(x) · nS(x)| dx

Similarly to previous works [3,8], we extend the Dirich-
let loss function to points far from the surface S. This is
achieved by computing an approximation of the function tS
(Eq. 1) based on nearest neighbors.

3. Results and evaluation
3.1. Experimental setup

We conducted a series of experiments to assess the per-
formance of our method. To target a broad amount of
surfaces, we experimented on three well-known data sets:
ShapeNet cars [2], Multi-Garment [1], and DeepFashion



Method

SIREN [10]
CAP-UDF [12]

Ours (MC1 [12])
Ours (MC2 [6])

DeepFashion [13]
time(s) ↓ L1CD ↓ L2CD ↓ NC ↓

376 27.3 1.980 0.107
1390 18.1 1.110 0.080

326
9.01 0.025 0.024
9.14 0.027 0.020

Multi-Garment [1]
time(s) ↓ L1CD ↓ L2CD ↓ NC ↓

374 40.5 8.810 0.094
1440 18.5 1.190 0.083

318
8.70 0.024 0.026
8.82 0.026 0.021

ShapeNet cars [2]
time(s) ↓ L1CD ↓ L2CD ↓ NC ↓

751 16.9 0.170 0.240
1040 10.9 0.071 0.288

317
12.3 0.057 0.387
13.7 0.081 0.304

Table 1. Training time, L1 and L2 mean Chamfer distances (×103), and Normal Consistency (NC) for the evaluated open surface data sets.
SIREN was trained as described in the original paper, while CAP-UDF and our method were trained on unsigned distances.

[13]. We undertake mesh reconstruction using two gradient-
based Marching Cubes algorithms, referred here as MC1
[12] and MC2 [6].

3.2. Surface reconstruction

3.2.1 Closed shapes

We benchmarked DUDF against state-of-the-art methods
for representing closed surfaces, where signed distances are
well-defined. Given that our primary focus is not on closed
surface representation, we limited this comparison to the
ShapeNet car dataset [2], modifying the meshes for closure
and omitting internal structures [11]. The comparative re-
sults are detailed in Table 2.

Method time(s) ↓ L1CD ↓ L2CD ↓
DeepSDF [9] 94 19.40 0.206
SIREN [10] 379 15.40 0.171

CAP-UDF [12] 1080 9.48 0.030
Ours (MC1 [12])

319
9.48 0.028

Ours (MC2 [6]) 9.49 0.028

Table 2. Training time, L1, and L2 mean Chamfer distances
(×103) for the closed ShapeNet cars data set. DeepSDF and
SIREN were trained on signed distances, while CAP-UDF and our
method were trained on unsigned distances.

3.2.2 Open surfaces

Regarding open surfaces, a full quantitative analysis is pre-
sented in Table 1. Qualitative results can be seen in Fig. 2.
On the one hand, our method demonstrates a significant im-
provement in efficiency, consuming up to an order of mag-
nitude less computational time than CAP-UDF, while also
showing enhanced performance across all three data sets.
This advantage is particularly evident in the DeepFashion
and Multi-Garment data sets, where CAP-UDF tends to in-
accurately close openings (like those at the ends of sleeves
in clothing).

In addition to these experiments, we compare our
method with CAP-UDF in the context of sphere tracing ren-
dering. This comparison is presented in Fig. 3, where we
showcase two rendering examples. Since learned unsigned
distance fields in CAP-UDF do not grow linearly away from

Ground truth SIREN (SDF) CAP-UDF DUDF (Ours)

Figure 2. Comparisons on DeepFashion [13] (top row), Multi-
Garment [1] (middle row), and ShapeNet cars [2] (bottom row)
data sets. DUDF preserves fine details and accurately repre-
sents complex geometries without closing holes, outperforming
SIREN (SDF), which tends to smooth and round models, and
CAP-UDF, which captures sharp features but often closes open
surfaces. Reconstructions for CAP-UDF and DUDF performed
with MC1 [12].

the surface, the marching steps in sphere tracing often fail
to accurately intersect the surface, leading to undesirable
visual artifacts. Even when hitting the surface, gradients
might be undefined, leading to noisy shaded images. In con-
trast, our proposed distance function does not exhibit these
problems, offering a more robust framework for direct ren-
dering. Furthermore, our ability to compute normals using
the maximum curvature field is useful for shading purposes,
enhancing the rendering quality without undergoing an in-
termediate 3D mesh reconstruction step.

3.3. Ablation study

We further study the impact of individual loss compo-
nents on the network’s accuracy through an ablation study
(Table 3). The methodology involves selectively deactivat-



CAP-UDF DUDF (Ours) CAP-UDF DUDF (Ours)

Figure 3. Rendering examples using sphere tracing. CAP-UDF
struggles with non-linear growth of their unsigned distance fields,
causing the sphere tracing marching step to miss the surface. Con-
versely, our method demonstrates precision in direct rendering
scenarios.

ing the terms related to each in our loss function to isolate
their contributions. We adopted the experimental frame-
work from the prior section, training on 30 meshes from the
DeepFashion dataset [13]. To elucidate the role of boundary
conditions in enhancing reconstruction quality, we incorpo-
rated a normal consistency metric into our analysis. Ad-
ditionally, we contrasted the effects of approximating the
ground truth distance function dS (with its distinct Eikonal
problem), using the same network architecture and sam-
pling scheme, with sine and ReLU activations. The findings
from this study show that such an approach leads to subop-
timal outcomes, thereby underscoring the effectiveness of
tS and the Eikonal problem proposed.

Method time(s) ↓ L1CD ↓ L2CD ↓ NC ↓
Baseline 326 9.14 0.027 0.020
λe = 0 312 9.43 0.028 0.033
λg = 0 150 9.16 0.027 0.021

λe, λg = 0 109 9.44 0.027 0.035
λµ, λσ = 0 302 9.24 0.027 0.031
dS (sine) 150 31.2 0.830 0.057

dS (ReLU ) 145 47.5 2.500 0.149

Table 3. Quantitative impact of each loss component on the recon-
struction accuracy of our network. We report training time, L1,
and L2 mean Chamfer distances ×103, and Normal Consistency
(NC). Last two rows correspond to approximating the ground truth
distance function dS instead of tS .

3.4. Computing mean and Gaussian curvature

A significant advantage of our method over previous ap-
proaches is the possibility to compute curvatures. Previ-
ous work learned non-differentiable functions, which pre-
clude the direct computation of geometrical properties such
as mean and Gaussian curvature, extracted through second
order differentiation. In Fig. 4 we show mean and Gaussian
curvatures for open and closed surfaces computed with our
method.
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Figure 4. Mean and Gaussian curvatures computed with our
method for closed surfaces (left) and open surfaces (right).

4. Limitations and future work
Our method encounters certain limitations. Primarily, by

approximating the function tS (Eq. 1), the Eikonal equation
requires supervision with ground truth unsigned distances,
in contrast to signed distance approaches where it is con-
stant everywhere. The quadratic behavior of the function
near the isosurface produces a wider near-zero strip which
can lead to slightly inflated representations. Additionally,
computing the maximum curvature direction field is com-
putationally expensive, requiring three network passes and
the diagonalization of the Hessian matrix.

5. Conclusion
In this work we introduced Differentiable Unsigned Dis-

tance Fields (DUDF) with Hyperbolic Scaling, a novel
approach that addresses inherent limitations of traditional
UDFs in representing open surfaces. By applying a hy-
perbolic transformation to the distance field, we define a
new variant of the Eikonal problem, tailored with unique
boundary conditions. The conducted experiments provide
evidence that our approach can lead to improvements in re-
construction quality and computational performance when
compared to several state-of-the-art methods. Moreover, the
ability to accurately calculate topological features such as
normals and curvatures is a notable benefit of our model,
offering additional utility in geometric processing tasks and
rendering.
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