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Abstract

This study explores aggregation and consensus methods
to combine lung segmentations from various neural net-
work models in X-ray images, aiming to enhance accuracy
and completeness. Through extensive experimentation, the
research identifies the most effective aggregation method,
with WOWA aggregation and a maximum-based consensus
approach outperforming individual models. This under-
scores the importance of aggregation techniques in optimiz-
ing anatomical structure segmentation in medical imaging.

1. Introduction
Segmenting medical images is crucial. It allows precise
identification and isolation of regions of interest in med-
ical data. Many imaging techniques like computed to-
mography, magnetic resonance imaging, and ultrasound of-
fer unique insights into anatomical structures and patholo-
gies. Among these, radiography is widely used due to
its cost-effectiveness and diagnostic utility. Despite tradi-
tional methods (e.g., thresholding, clustering, region grow-
ing, and edge detection) being effective in different scenar-
ios [9, 10, 13, 18], they often struggle with the complexities
and variabilities present in medical images [3]. However,
CNNs have revolutionized segmentation techniques [11],
primarily because of their ability to learn feature represen-
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tations from extensive datasets automatically. CNN-based
methods, including architectures like residual networks [5],
fully connected convolutions [4], and UNet-based models
[12, 21], have shown significant improvements in segment-
ing pulmonary regions from radiographic images. However,
not all methods offer the same accuracy, and there may be
imprecision. So, our main goal is to evaluate the effective-
ness of combining results from many CNN models using
aggregation and consensus methods to improve pulmonary
region segmentation in radiography.

In this study, we selected seven distinct CNN mod-
els: UNet [14, 17], UNetPre [12], GSC [6], ERFNet [16],
LinkNet [1], ESNet [23], and CGNet [24]. In addition
to selecting appropriate CNN architectures, interpreting
their outputs is crucial for effective aggregation. To en-
sure compatibility, we normalized outputs into the range
[0, 1]. We decided to use aggregation methods, such as Or-
dered Weighted Averaging (OWA) and Weighted Ordered
Weighted Averaging (WOWA), to combine the outputs of
multiple CNN models. OWA methods allow the emphasis
of specific value ranges, with weights obtained from regu-
lar monotone increasing quantifiers [25] enabling flexibility
in the aggregation process. WOWA methods [22] extend
OWA by adding order relations among prediction models.
It does this by using two weight vectors. One is for tradi-
tional weighting and the other is to reflect model impor-
tance. Conversely, consensus methods [8] determine the
optimal aggregation approach. These methods can operate
at both image and pixel levels, and improve the combined
segmentation accuracy by using the knowledge of multiple
models. In this study, we propose two pixel-level consen-
sus methods, which provide more flexible results. The first,



argmax, selects, at each pixel, the maximum value among
the outputs of several CNN models. The second, mean,
finds the mean value across all the considered outputs. We
aim to improve lung segmentation in radiographic images,
which is essential for aiding precise diagnoses. This will
be done by using aggregation and consensus techniques to
obtain a more accurate and complete segmentation.

2. Methodology
Database We considered publicly annotated databases
with frontal chest X-rays and diverse visual traits when con-
structing the dataset as we aimed to improve the model’s
ability to generalize. These databases were JSRT [20] with
247 images, Montgomery [7] with 138 images, and the
COVID-19 Radiography Database [2] with 2555 images.
Examples of these databases are shown in Figure 1.

Figure 1. Examples from the dataset used in the study: (a) JSRT,
(b) Montgomery, (c) and (d) COVID-19 Radiography Database.

Methodology Initially, see Figure 2, each of the seven
considered CNNs generates segmentations for the pul-
monary area. Then, a statistical comparison helps to rank
the performance of the models. Afterward, we apply aggre-
gation using OWA and WOWA approaches along with two
consensus methods (argmax and mean). Finally, through
a statistical analysis, we identify the optimal aggregation
method for each consensus method and evaluate if aggrega-
tion improves individual CNN results.

Experiments Following individual CNN model segmen-
tations, we tested ways of combining them, namely: OWA
1, described in section 1; OWA 2, which uses only the top

Figure 2. Proposed approach pipeline: Seven CNN networks seg-
ment pulmonary regions from X-ray images. Outputs are normal-
ized and combined using aggregation methods (OWA and WOWA)
with consensus methods (argmax and mean).

4 models’ segmentations; OWA 3, which includes all seg-
mentations except the worst model; and WOWA 1, which
assigns weights based on model’s performance order. So,
with n being the number of models, the i-th model gets the
weight i∑n

j=1 j ; WOWA 2, same as WOWA 1 but without
the worst model; WOWA 3, same as WOWA 1 but the best
model gets a weight of 1

2 , while the others get 1
2(n−1) , with

n being the number of models used.

Implementation details We divided the database into
80% for training and 20% for testing while maintaining the
proportions of images from each database in both sets. We
implemented and trained architectures from scratch using
Keras. We used a batch size of 16, Adam optimizer with a
learning rate of 10−4, and the Dice loss function defined as
Dloss(p, q) = 1−D(p, q). Here, we compute D(p, q) as

D(p, q) =
2 ·

∑
x,y(px,y · qx,y)∑

x,y(p
2
x,y + q2x,y)

,

where px,y and qx,y refer to the value of pixel (x, y) in the
prediction p and in the ground truth mask q, respectively.
The range of each px,y is the unit interval [0, 1], while qx,y
is binary and can only take the values 0 or 1. The training
involved early stopping based on loss function monitoring,
with weights restored to the best epoch.

Evaluation Qualitative and quantitative analyses evalu-
ated the quality of the results of the different experiments
using common performance measures. These include Ac-
curacy, Jaccard index, and Sensitivity. We used Welch’s
t-test with a significance level α of 0.05 as a statistical test
to compare the average performance metrics between ex-
periments. The test assumptions were met due to the large
sample size. It ensured a normal distribution of the vari-
able, as the central limit theorem says. Additionally, other
test requirements were satisfied as the experiment used in-
dependent and randomly selected samples.

We classify the statistical results using the following cri-
terion. If the population mean of the model in the row is
better than that of the model in the column: ✓✓. If we can’t
rule out equality between means, but the sample median in
the row is better than in the column:✓. If we can’t rule out
equal population means, and the sample median in the row
is worse than that in the column: ✗ If the population mean
of the model in the row is worse than that of the model in
the column: ✗✗.

3. Results
Quantitative analysis Firstly, we evaluated several
CNNs for segmenting the pulmonary region in X-ray im-
ages. We summarized our analysis of the results from each



GSC ESNet ERFNet LinkNet UNetPre UNet CGNet

Accuracy
Mean 0,9916 0,9891 0,9892 0,9893 0,9852 0,9873 0,9684
Std 0,0074 0,0092 0,0128 0,01 0,0085 0,0147 0,0133

Median 0,9942 0,9923 0,9926 0,9924 0,9878 0,9917 0,9718

Jaccard
Mean 0,9652 0,9559 0,956 0,9559 0,9393 0,9467 0,8753
Std 0,0303 0,035 0,0483 0,0417 0,0358 0,0598 0,0589

Median 0,9739 0,9662 0,9679 0,9663 0,949 0,9646 0,891

Sensitivity
Mean 0,9772 0,983 0,9781 0,9762 0,9714 0,9595 0,9376
Std 0,0247 0,0171 0,0285 0,0329 0,0273 0,0574 0,0434

Median 0,9841 0,9879 0,9851 0,9857 0,9795 0,9786 0,9483

Table 1. Central tendency measures and standard deviation calcu-
lated over the test set.

CNN in Tables 1 and 2. The analysis revealed that the
GSC model statistically outperformed the other models in
all metrics, establishing itself as the top-performing model.
Conversely, CGNet demonstrated the poorest performance.
We classified the seven networks by their performance and
used these classifications to set the weights for WOWA ag-
gregations, indicated in Table 3.

Then, we explore if aggregating the segmentations of the
seven CNNs is better than each model alone. These results
are grouped by consensus method (argmax or mean), and
aggregation function (OWA or WOWA). Notably, Tables 5
and 7 show that the WOWA 2 aggregation method was the
most effective when using the argmax and mean consensus
methods.

Finally, we compare the best aggregation function,
WOWA 2, with both the mean and argmax consensus meth-
ods with the best-performing individual network, GSC. The
results, shown in Tables 8 and 9, demonstrate the superi-
ority of aggregation methods. Specifically, the WOWA 2
with argmax consensus improves segmentation outcomes
for all metrics. The findings suggest that combining data
can improve the accuracy and reliability of pulmonary re-
gion segmentation in medical images, with potential impli-
cations for clinical diagnosis and treatment planning.

Qualitative analysis Figure 5, demonstrates the capabil-
ity of our approach to detect pulmonary regions under di-
verse circumstances, though further enhancements are pos-
sible. Using aggregation methods improves lung segmenta-
tion, see Figure 3. Although differences may be subtle, they
are significant at the pixel level. Also, Figure 5 shows how
the aggregated result fixes flaws in individual CNN mod-
els, such as interior holes and isolated regions. In addition,
in the absence of specialist segmentations, we visually as-
sessed the generalization capacity of models. We use new
unseen data to detect lung regions in X-rays with alterna-
tive positions and with the “white lung” condition. Figure 5
shows the power of our approach, although further enhance-
ments are possible.

4. Conclusions
In this study, we tested if aggregation methods improve
lung segmentation in X-rays. We trained seven CNN-based

Jaccard
GSC ERFNet LinkNet ESNet UNet UNetPre CGNet

GSC - ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

ERFNet ✗✗ - ✓ ✓ ✓✓ ✓✓ ✓✓

LinkNet ✗✗ ✗ - ✓ ✓✓ ✓✓ ✓✓

ESNet ✗✗ ✗ ✗ - ✓✓ ✓✓ ✓✓

UNet ✗✗ ✗✗ ✗✗ ✗✗ - ✓✓ ✓✓

UNetPre ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ - ✓✓

CGNet ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ -
Accuracy

GSC - ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

ERFNet ✗✗ - ✗ ✓ ✓✓ ✓✓ ✓✓

LinkNet ✗✗ ✓ - ✓ ✓✓ ✓✓ ✓✓

ESNet ✗✗ ✗ ✗ - ✓ ✓✓ ✓✓

UNet ✗✗ ✗✗ ✗✗ ✗ - ✓✓ ✓✓

UNetPre ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ - ✓✓

CGNet ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ -
Sensitivity

GSC - ✗ ✓ ✗✗ ✓✓ ✓✓ ✓✓

ERFNet ✓ - ✓ ✗✗ ✓✓ ✓✓ ✓✓

LinkNet ✗ ✗ - ✗✗ ✓✓ ✓✓ ✓✓

ESNet ✓✓ ✓✓ ✓✓ - ✓✓ ✓✓ ✓✓

UNet ✗✗ ✗✗ ✗✗ ✗✗ - ✗✗ ✓✓

UNetPre ✗✗ ✗✗ ✗✗ ✗✗ ✓✓ - ✓✓

CGNet ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ -

Table 2. Networks classification based on the statistical test per-
formed on the jaccard index, accuracy and sensitivity.

WOWA GSC ERFNet LinkNet ESNet UNet UNetPre CGNet
WOWA 1 7

28
5
28

5
28

5
28

3
28

2
28

1
28

WOWA 2 6
21

4
21

4
21

4
21

2
21

1
21 0

WOWA 3 6
12

1
12

1
12

1
12

1
12

1
12

1
12

Table 3. WOWA aggregation weight ratios are determined from
the prior performance classification of the seven networks, as dis-
played in the Table 2.

OWA 1 OWA 2 OWA 3 WOWA 1 WOWA 2 WOWA 3

Accuracy
Mean 0,9917 0,9918 0,9919 0,992 0,992 0,9918
Std 0,0068 0,0072 0,0068 0,0071 0,0071 0,0073

Median 0,994 0,9943 0,9942 0,9944 0,9945 0,9944

Jaccard
Mean 0,9658 0,9663 0,9664 0,9671 0,9671 0,9659
Std 0,0273 0,0296 0,0277 0,0285 0,0286 0,0299

Median 0,9731 0,9741 0,9734 0,9749 0,9748 0,9749

Sensitivity
Mean 0,9807 0,9812 0,9804 0,981 0,981 0,9779
Std 0,0215 0,0221 0,0226 0,0216 0,0215 0,0244

Median 0,9872 0,9881 0,9873 0,9876 0,9876 0,9846

Table 4. Central tendency and standard deviation values for vari-
ous aggregation methods using the argmax consensus.

Figure 3. Contours from individual CNNs alongside segmenta-
tions from the WOWA 2-argmax aggregation. The annotated re-
gion is marked in green, while predictions are in red.

architectures. Later analysis showed that the GSC model
exhibited superior average performance, while the CGNet
was the least effective. We also assessed many aggrega-
tion and consensus functions based on CNNs results. We
found that the WOWA 2 aggregation with the argmax con-
sensus method had the best statistically significant average



Jaccard
OWA 1 OWA 2 OWA 3 WOWA 1 WOWA 2 WOWA 3

OWA 1 - ✗ ✗✗ ✗✗ ✗✗ ✗

OWA 2 ✓ - ✗ ✗✗ ✗✗ ✓

OWA 3 ✓✓ ✓ - ✗✗ ✗✗ ✓

WOWA 1 ✓✓ ✓✓ ✓✓ - ✗✗ ✓✓

WOWA 2 ✓✓ ✓✓ ✓✓ ✓✓ - ✓✓

WOWA 3 ✓ ✗ ✗ ✗✗ ✗✗ -
Accuracy

OWA 1 - ✗ ✗✗ ✗✗ ✗✗ ✗

OWA 2 ✓ - ✗ ✗✗ ✗✗ ✓

OWA 3 ✓✓ ✓ - ✗✗ ✗✗ ✓

WOWA 1 ✓✓ ✓✓ ✓✓ - ✗✗ ✓✓

WOWA 2 ✓✓ ✓✓ ✓✓ ✓✓ - ✓✓

WOWA 3 ✓ ✗ ✗ ✗✗ ✗✗ -
Sensitivity

OWA 1 - ✗ ✓✓ ✗ ✗ ✓✓

OWA 2 ✓ - ✓✓ ✓✓ ✓✓ ✓✓

OWA 3 ✗✗ ✗✗ - ✗✗ ✗✗ ✓✓

WOWA 1 ✓ ✗✗ ✓✓ - ✓ ✓✓

WOWA 2 ✓ ✗✗ ✓✓ ✗ - ✓✓

WOWA 3 ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ -

Table 5. Evaluation of aggregation functions using the argmax
consensus method with respect to the considered metrics.

OWA 1 OWA 2 OWA 3 WOWA 1 WOWA 2 WOWA 3

Accuracy
Mean 0,9917 0,9918 0,9919 0,992 0,992 0,9917
Std 0,0068 0,0072 0,0068 0,007 0,0071 0,0073

Median 0,994 0,9943 0,9942 0,9944 0,9945 0,9943

Jaccard
Mean 0,9658 0,9663 0,9664 0,967 0,9671 0,9658
Std 0,0273 0,0295 0,0277 0,0285 0,0286 0,0299

Median 0,9731 0,9739 0,9735 0,9749 0,9748 0,9747

Sensitivity
Mean 0,9807 0,9812 0,9804 0,981 0,981 0,9778
Std 0,0215 0,0221 0,0226 0,0216 0,0215 0,0245

Median 0,9872 0,9881 0,9873 0,9876 0,9875 0,9845

Table 6. Central tendency and standard deviation values for vari-
ous aggregation methods using the mean-based consensus.

Jaccard
OWA 1 OWA 2 OWA 3 WOWA 1 WOWA 2 WOWA 3

OWA 1 - ✓ ✗✗ ✗✗ ✗✗ ✗

OWA 2 ✗ - ✗ ✗✗ ✗✗ ✓

OWA 3 ✓✓ ✓ - ✗✗ ✗✗ ✓

WOWA 1 ✓✓ ✓✓ ✓✓ - ✗✗ ✓✓

WOWA 2 ✓✓ ✓✓ ✓✓ ✓✓ - ✓✓

WOWA 3 ✓ ✗ ✗ ✗✗ ✗✗ -
Accuracy

OWA 1 - ✗ ✗✗ ✗✗ ✗✗ ✗

OWA 2 ✓ - ✗ ✗✗ ✗✗ ✓

OWA 3 ✓✓ ✓ - ✗✗ ✗✗ ✓

WOWA 1 ✓✓ ✓✓ ✓✓ - ✗✗ ✓✓

WOWA 2 ✓✓ ✓✓ ✓✓ ✓✓ - ✓✓

WOWA 3 ✓ ✗ ✗ ✗✗ ✗✗ -
Sensitivity

OWA 1 - ✗✗ ✓✓ ✗ ✗ ✓✓

OWA 2 ✓✓ - ✓✓ ✓✓ ✓✓ ✓✓

OWA 3 ✗✗ ✗✗ - ✗✗ ✗✗ ✓✓

WOWA 1 ✓ ✗✗ ✓✓ - ✓ ✓✓

WOWA 2 ✓ ✗✗ ✓✓ ✗ - ✓✓

WOWA 3 ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ -

Table 7. Evaluation of aggregation functions using the mean-based
consensus method with respect to the considered metrics.

performance. In all, these findings highlight the power of
aggregation. It improves the performance of individual deep
learning models. The qualitative evaluation also confirmed
the models’ ability to generalize across conditions not in-
cluded in training data, such as alternative X-ray positions
and “white lung” conditions.

We intend to explore if using this segmentation approach
as a prior improves lung disease classification. We will also
study how applying techniques like [15] and Grad-CAM
[19] help us understand the models’ predictions.

GSC WOWA 2 argmax WOWA 2 mean

Accuracy
Mean 0,9916 0,992 0,992
Std 0,0074 0,0071 0,0071

Median 0,9942 0,9945 0,9945

Jaccard
Mean 0,9652 0,9672 0,9671
Std 0,0303 0,0286 0,0286

Median 0,9736 0,9748 0,9748

Sensitivity
Mean 0,9772 0,981 0,981
Std 0,0247 0,0215 0,0215

Median 0,9841 0,9876 0,9875

Table 8. Central tendency and standard deviation for GSC, and
WOWA 2 aggregation using both argmax and mean consensus.

Jaccard/Accuracy/Sensitivity
GSC WOWA 2 argmax WOWA 2 media

GSC - ✗✗ ✗✗

WOWA 2 argmax ✓✓ - ✓✓

WOWA 2 media ✓✓ ✗✗ -

Table 9. Comparison of the best network and optimal aggregation
using WOWA 2 with argmax and mean consensus methods.

(a)

(b)

Figure 4. Lung segmentation examples with (a) internal holes and
(b) inaccurately segmented regions outside the lung area.

(a)

(b)

Figure 5. Pulmonary region segmentation examples from seven in-
dividual CNNs and our aggregated method applied to radiographs
with (a) sideways positioning and (b) ”white lung” pathology.
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