
RetryTRACK: Recovering Misses in Multi-camera Pedestrian Tracking

Isabella de Andrade
Voxar Labs, Centro de Informática
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Abstract

Tracking pedestrians commonly relies on detection algo-
rithms. However, these algorithms are not always correct
and may miss some pedestrians. Although using multiple
cameras is a way to handle this, some failures still occur.
Thus, it is desirable that the tracker attempt to fix the detec-
tions. This work proposes an online and unsupervised mod-
ule to recover missing detections during tracking. The mod-
ule applies linear extrapolation and Gaussian process re-
gression techniques to produce new smoothed coordinates.
We attached the module to a multi-camera baseline tracker
and evaluated it on the WILDTRACK dataset. The multi-
ple object tracking accuracy was improved by 2.42% with
the addition of the module. Besides, this strategy recovered
20.3% of missing detections, demonstrating its potential to
solve the problem.

1. Introduction
Tracking pedestrians is the task of localizing each person
over time. Some applications require online methods, such
as real-time surveillance systems [8] and autonomous vehi-
cles [11]. These algorithms typically utilize the tracking-
by-detection (TBD) paradigm, as discussed in a survey by
Sun et al. [16]. In this paradigm, an object detector retrieves
the pedestrians at each frame. Then, the tracker associates
the detections that belong to the same person, assigning
them the same identity.

Thus, tracking accuracy is highly dependent on the qual-
ity of detections. It is important to note that there may be
instances where the detector fails to detect a person’s pres-
ence. One of the reasons for this is due to occlusions when
a person or object blocks the view. In this case, using mul-
tiple cameras is helpful to recover persons that are visible

from another point of view [10].
Several state-of-the-art techniques [4, 13, 17, 20] train

neural networks to track in multiple cameras. However, su-
pervised methods require retraining in new environments,
hindering real-world applications.

Lyra et al. [12] proposes an online unsupervised multi-
camera tracker. It uses the distance between the given de-
tections to calculate which ones should be paired together.
If the pedestrian is not detected in a frame, the tracker will
not retrieve his position at that moment. Thus, the track-
ing algorithm should be capable of handling errors that may
still occur.

Detections are typically accompanied by a confidence
score, and only those with high scores are utilized. There-
fore, using detections with low confidence can decrease the
number of missing detections. On the other hand, it ele-
vates the possibility of detecting a person’s presence when
no one is around. ByteTrack [21] suggests including detec-
tions with low confidence and trying to decide which ones
are correct during tracking.

StrongSORT [5] proposes some improvements in the
classic tracker DeepSORT [19], including a module to re-
cover partially lost tracks. If a person does not appear on
time t but is present on times t− 1 and t+ 1, they interpo-
late the detections from past and future to create a detection
in t and use a Gaussian filter to smooth the coordinates.

As this process uses information from future frames, it
occurs offline. Besides, both ByteTrack and StrongSORT
were applied only in the single-camera scenario, relying on
the view of one camera.

Our work builds upon the proposed module from Strong-
SORT to recover detections. We adapted this module to be-
come online and to work in a multi-camera environment.
Then, we applied it to the multi-camera online tracker pro-
posed by Lyra et al. [12] to evaluate. The tracker and mod-



ule are unsupervised and, therefore, well-suited for practical
applications.

The contributions of this work are:
• An online and multi-camera module to recover missing

detections that can be linked to existing trackers (Sec-
tion 2);

• Quantitative evaluations of the proposed method (Sec-
tion 3).

2. RetryTRACK
This section explains our module and the complete track-
ing procedure, which contains four steps and is illustrated
in Figure 1. First, we extract detections from the im-
ages (Section 2.1). Then, the detections are given to the
baseline tracker (Section 2.2). Finally, we insert the mod-
ule to recover lost detections (Section 2.3) and use a filter to
remove duplicates (Section 2.4).

Figure 1. Images from multiple cameras are input to the de-
tector, which retrieves detections as world ground plane coordi-
nates. A baseline tracker computes pedestrian trajectories, and
our Gaussian-smoothed extrapolation refines the results, recover-
ing missing detections. The output is the updated pedestrian tra-
jectories.

2.1. Detector

We used the tracker proposed by Lyra et al. [12] as the ba-
sis for our method. It relies on a multicamera pedestrian

detection proposed by Lima et al. [10]. This detector uses
AlphaPose [9] to extract the keypoints located at the pedes-
trian’s ankles, which is used to compute the walker ground
point pcam = (xcam, ycam). Then, they use the camera cal-
ibration to project every pedestrian camera point onto the
world ground plane. Each pedestrian has one world ground
point per camera. Thus, they gather the closest points and
calculate the mean to determine the final pedestrian coordi-
nate in 3D space pworld = (xworld, yworld, zworld), where
all of the pedestrians are on the ground, which is located at
zworld = 0 [10].

2.2. Baseline Tracker

The detections are input to the tracker. Each detection re-
ceives an id at the first frame (t = 0). In the follow-
ing frames, they compare the current detections to existing
tracks.

A bipartite graph is constructed, with the nodes repre-
senting detections from the previous and current frames and
edges representing the Euclidean distance between them. If
the previous frame detections do not include an older tra-
jectory, a Kalman filter [7] predicts the position of the lat-
est detection in this trajectory. Then, they use the maxi-
mum weight matching algorithm to retrieve which detec-
tions should be assigned together.

2.3. Gaussian-smoothed Extrapolation

By the end of each frame, we insert the module Gaussian-
smoothed Extrapolation (GSE) to recover lost tracks. If a
person of the previous frame t−1 is not found in the current
time t, we use linear extrapolation [2] with the detections of
t − 2 and t − 1 to generate a new detection at time t using
the following equation

(xt, yt) = (xt−2, yt−2)+f ∗((xt−1, yt−1)−(xt−2, yt−2)),
(1)

where
f =

ft − ft−2

ft−1 − ft−2
, (2)

ft is the number of the frame t, and (x, y) is world coordi-
nate.

As a stop criterion, we verify if the extrapolated coordi-
nate is still inside the Area of Interest (AOI), a rectangle in
the world ground plane in which we want to keep track of
pedestrians, defined by AOI = (xmin, xmax, ymin, ymax).
We do not include this coordinate in our results if it is out-
side the AOI. Thus, we will stop trying to recover this track.

However, the generated points assume the pedestrian’s
movement to be linear, which is often not the case. There-
fore, we use Gaussian Process Regression (GPR) to im-
prove our predictions.

Given a set of observed points, multiple functions can fit
them. The GPR considers all possible functions and com-
putes the probability distribution over them. If we draw a



straight line between the points, the result will be a noisy
function that is inadequate to predict new points. Hence,
we use a Radial Basis Function (RBF) kernel to smooth the
functions. The kernel can be denoted by

k(xi, xj) = exp

(
−∥xi − xj∥2

2λ2

)
, (3)

where x is the frame, and λ = τ ∗ log(τ3/l). l refers to the
length of tracks, and τ is set to 10 [5]. Figure 2 exemplifies
the effect of the kernel in the functions.

(a) Functions before using RBF. (b) Functions after using RBF.

Figure 2. Comparison between example functions before and after
applying RBF.

Afterwards, the probability distribution [18] is calculated
using

P (x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
, (4)

where x is the frame, µ is the mean and σ2 is the variance.
We fit the GPR model using the frame t as a variable

and xworld and yworld as target values. Thus, the regression
function modeled by GPR is

P (f |X) = N(f |µ,K), (5)

where X are the frames, f are the xworld and yworld values,
µ is the mean function derived from the probability distri-
bution and K is the kernel function. Then, we predict the
smoothed coordinates.

2.4. Filter Duplicates

During experiments, we found that some extrapolated co-
ordinates were too close to another detection. We do not
need duplicate occurrences within a short range since two
persons can not occupy the same space.

Hence, we discard detections that have less than 0.4m
of distance, which is inside the typical width of the shoul-
ders [15].

3. Experiments
This section explains how we evaluated our method and
what were the results. Section 3.1 describes the dataset and
Section 3.2 the metrics. Then, Section 3.3 compares our
technique with the state-of-the-art. Finally, in Section 3.4
we show the ablation study.

3.1. Dataset

We use the public dataset WILDTRACK [3] in our exper-
iments. It has seven cameras with overlapping views and
calibration parameters. The cameras have 400 frames with
annotations indicating the pedestrian ID, the bounding box
at each camera (if the pedestrian is visible from that point
of view), and the world ground plane coordinate.

Since other methods need to split the frames for training,
we use the last 10% of frames to evaluate our technique.
Thus, the test subset is the same for fair comparison.

3.2. Metrics

Three types of errors can occur during tracking. First, a de-
tection can point to an empty space, which is known as a
false positive (FP). Second, a real person may not be de-
tected, which is called a false negative (FN). Finally, if a
person already being tracked with one ID is assigned to an-
other ID, it is considered a mismatch (MM).

We used the CLEAR MOT metrics [1] multiple object
tracking accuracy (MOTA) and multiple object tracking
precision (MOTP). While MOTA evaluates the proportion
between errors and ground truth objects, MOTP measures
the precision of tracking.

Furthermore, we include the common metrics of preci-
sion (Prec) and recall (Rcll) [14].

3.3. State-of-the-art

We compare our method with other state-of-the-art tech-
niques in Table 1. Some methods, such as Cheng et al. [4]
and Nguyen et al. [13], perform better. However, they re-
quire training. Our work is a simple yet effective unsuper-
vised approach and is easier to apply in new environments.

3.4. Ablation

We evaluated each module addition to the baseline tracker.
The results are presented in Table 2.

It is possible to see that GSE alone does not improve
the results. This is because although it decreases the num-
ber of FNs, it increases FPs when extrapolating infinitely.
However, including the filter of duplicates, the algorithm
performs better than the baseline.

Besides, as the goal was to recover detections, we ob-
served that applying GSE+Filter reduced FNs by 20.3%.

4. Conclusion
In this work, we proposed an online and unsupervised mod-
ule to recover lost detections. We use linear extrapolation
to create new detections and a Gaussian process regressor
to smooth the coordinates. Furthermore, we filter close
detections to remove duplicates. We evaluate the mod-
ule’s performance using a baseline tracker on the WILD-
TRACK dataset. This resulted in 79.52% of MOTA, which



Technique MOTA MOTP FP FN MM

Supervised

You & Jiang [20] 74.6% 78.9% 114 107 21
Vo et al. [17] 75.8% - - - -
Cheng et al. [4] 81.6% 81.8% - - -
Nguyen et al. [13] 97.1% - 71 7 12

Unsupervised Lyra et al. [12] 77.1% 94.77% 76 128 14
Ours 79.52% 96.27% 76 102 17

Table 1. Comparison with other state-of-the-art techniques in WILDTRACK dataset. We evaluate using the last 10% of frames to compare
with supervised methods. Ours is the best unsupervised method.

Technique MOTA MOTP Prec Rcll FP FN MM

Lyra et al. [12] 77.1% 94.77% 91.56% 86.55% 76 128 14
Lyra et al. [12]+GSE 75.95% 95.46% 89.25% 88.97% 102 105 22
Lyra et al. [12]+Filter 76.16% 94.77% 91.16% 85.61% 79 137 11
Lyra et al. [12]+GSE+Filter 79.52% 96.27% 91.79% 89.29% 76 102 17

Table 2. Results of each module addition to the baseline tracker in the WILDTRACK dataset. Using GSE with the filter of duplicates is
the best result.

is a 2.42% improvement and makes it the best unsupervised
method. Furthermore, we were able to reduce the number
of FNs by 20.3%.

In future work, we plan to test our technique with other
datasets such as MultiviewX [6] to validate its reliability
with stronger evidence. Besides, we will analyze its limita-
tions by using different numbers of cameras and automatic
calibration, as the need for calibrated cameras can also be a
drawback for real applications.
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