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Abstract

A powerful way to adapt a visual recognition model to a
new domain is through image translation. However, com-
mon image translation approaches only focus on generat-
ing data from the same distribution as the target domain. In
this paper, we propose HalluciDet, an IR-RGB image trans-
lation model for object detection. Instead of focusing on re-
constructing the original image on the IR modality, it seeks
to reduce the detection loss of an RGB detector, and there-
fore avoids the need to access RGB data. We empirically
compare our approach against state-of-the-art methods for
image translation and for fine-tuning on IR, and show that
our HalluciDet improves detection accuracy in most cases
by exploiting the privileged information encoded in a pre-
trained RGB detector.

1. Introduction

Despite the impressive performance of deep learning (DL)
models, their effectiveness can significantly deteriorate
when applied to modalities that were not present during the
training [1, 12]. For example, a model trained on RGB im-
ages may not perform well on IR images during testing [14].
To address the issue, some studies utilize image-to-image
translation techniques to narrow the gap between modali-
ties distributions. Typically, these methods employ classi-
cal pixel manipulation techniques or deep neural networks
to generate intermediate representations, which are then
fed into a detector trained on the source modality. How-
ever, transitioning from IR to RGB has proven challenging
due to generating color information while filtering out non-
meaningful data associated with diverse heat sources. This
challenge is particularly pronounced when the target cate-
gory is also a heat-emitting source, such as a person.

In this work, we argue that achieving a robust inter-
mediate representation for a given task needs guiding the
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Figure 1. Example of detections using baseline and HalluciDet
methods on LLVIP data. (a) RGB image with ground truth (yel-
low). (b) IR image with detections of fine-tuned model (green).
(c) Translated image, IR to RGB, produced by FastCUT and de-
tections (green). (d) Hallucinated image produced by our method
and detections (green); HalluciDet does not seek to reconstruct all
image details but only to enhance the objects of interest.

image-to-image translation using a task-specific loss func-
tion. Here, we introduce HalluciDet, a novel approach for
image translation focusing on detection tasks. In Figure 1,
the detections of our method are illustrated and compared
with competitors. Our translation approach relies on an an-
notated IR dataset and an RGB detector to identify the ap-
propriate representation space. The ultimate goal is to find a
translation model, hereafter referred to as the Hallucination
network, capable of translating IR images into meaningful
representation to achieve accurate detections with an RGB
detector. Our main contributions can be summarized as
follows:



(1) We propose HalluciDet, a novel approach that leverages
privileged information from pre-trained detectors in the
RGB modality to guide end-to-end image-to-image trans-
lation for the IR modality. (2) Given that our model fo-
cuses on the IR detection task, HalluciDet uses a straight-
forward yet powerful image translation network to reduce
the domain gap between IR-RGB modalities, guided by the
proposed hallucination loss function incorporating standard
object detection terms. (3) Through experiments conducted
on two challenging IR-RGB datasets (LLVIP and FLIR), we
compare HalluciDet against various image-to-image trans-
lation. Our approach is seen to improve detection accuracy
on the IR modality by incorporating privileged information
from RGB.
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Figure 2. HalluciDet leverages privileged information for modal-
ity hallucination with pre-trained detectors. During training, the
hallucination network learns how to use the privileged informa-
tion encoded by the RGB detector to translate the IR image into
a new hallucination modality representation. Then, during infer-
ence, the model provides better IR detection using the translated
modality.

2. Related Work
Object detection: Deep learning object detection meth-
ods are categorized as two-stage and one-stage detectors.
The two-stage detector extracts regions of interest or pro-
posals for a second-stage classifier. Then, the second stage
is responsible for classifying if there is an object in that re-
gion. The one-stage detectors mainly focus on end-to-end
training and real-time inference speed of the object detec-
tors. RetinaNet [6] is a one-stage detector with focal loss
for better detection of hard objects. FCOS [11] is a one-
stage detector, which reduces all complicated computation
related to anchor boxes, which can lead to an increase in in-
ference time. The Faster R-CNN [9] is a two-stage detector
with a Region Proposal Network and then a classification
part. Learning using Privileged Information (LUPI): In
human learning, the role of a teacher is crucial, guiding the
students with additional information, such as explanations,
comparisons, and so on [13]. In the LUPI setting, during

the training, we have additional information provided by a
teacher to help the learning procedure. Since the additional
information is available at the training stage but not dur-
ing the test time, we call it privileged information [13]. In
this work, we use the privileged information coming from a
pre-trained RGB detector to improve the performance of the
infrared detection. Image Translation: The objective of
image translation is to learn a mapping between two given
domains such that images from the source domain can be
translated to the target domain. A common approach is
CycleGAN, which a GAN for translation between two do-
mains, then techniques such as Contrastive Unpaired Trans-
lation (CUT) [7] and FastCUT [7] were developed. CUT is
an image translation model based on maximizing mutual in-
formation of patches, which is faster than previous methods
while providing results as good as others.

3. Proposed Method
HalluciDet. Our goal is to generate a representation from
an IR image that a given RGB detector can effectively pro-
cess. Let X ⊂ RW×H be the set of IR data containing
N images.1 During the learning phase, a training dataset
S = {(xi,bi)} is given such that xi ∈ X is an IR image
and bi is a set of bounding boxes. In addition, an RGB de-
tector fθ is also available. Then, a representation mapping
is here defined as hϑ : X → R, where R is the representa-
tion space and ϑ are the learnable parameters of the trans-
lation model. Such a representation space, R ⊂ RW×H×3,
is conditioned to the subset of plausible RGB images that
are sufficient to obtain a proper response from the RGB de-
tector fθ. To find such a mapping we solve the optimization
problem ϑ∗ = argminϑ Lhall(x,b;ϑ) which implicitly uses
the composition (hϑ ◦ fθ)(x) to guide the intermediate rep-
resentation. Our proposed model, HalluciDet, comprises
two modules: a hallucination network responsible for the
image-to-image harmonization and a detector. The Hallu-
cination network is based on U-net [10], but modified with
attention blocks which are more robust for image translation
tasks [2, 5]. As a side advantage, our model allows evalu-
ating both modalities by providing the appropriate modality
identifier during the forward pass, i.e., RGB or IR. Figure
2 depicts the training and evaluation process of an IR im-
age using privileged information from the RGB detector.
The detector fθ layers are frozen, thus preserving the prior
knowledge, but the weights ϑ of the hallucination network
hϑ are updated during the backward pass. The input mini-
batch is created with images from X set, leading to the hal-
lucinated minibatch, which is then evaluated on fθ to obtain
the associated detections. To find the appropriate represen-
tation space, the hallucination loss Lhall(x,b, ϑ) drives the

1The term Hallucination was used for the model’s power to provide
a pixel color space for the intermediated image that was useful for the
detector even though there is no constraint on the colors of the pixels.



optimization by updating only the hallucination network pa-
rameters. The representation space R is guided by Lhall to
be closer enough to the RGB modality, which allows the de-
tector to make successful predictions. As the representation
is being learned with feedback from the frozen detector, it
extracts the previous knowledge so that this new intermedi-
ate representation is tuned for the final detection task. The
proposed hallucination loss shares some similarities with
the aforementioned detection loss but with the distinction
of only updating the modality adaptation parameters:

Lhall(x,b, ϑ) = Lcls(fθ(hϑ(x)), c)
+ λ · Lreg(fθ(hϑ(x)),b)

(1)

Equation 1 is optimized w.r.t ϑ. We added the hyperparam-
eter λ to weigh the contribution of each term and for numer-
ical stability purposes. Where Lcls is the cross-entropy be-
tween the classes detected on the intermediated image and
the GT, and Lreg is l1 loss between the detected bound boxes
and the GT boxes.

Image-to-image translation Learning strategy
AP@50↑

Test Set (Dataset: LLVIP)
FCOS RetinaNet Faster R-CNN

U-Net [10] Reconstruction 42.94 ± 4.14 47.35 ± 1.92 63.23 ± 2.03
CycleGAN [15] Adversarial 22.76 ± 1.94 27.04 ± 4.23 38.92 ± 5.09
CUT [8] Contrastive learning 19.16 ± 2.10 21.61 ± 2.09 35.17 ± 0.32
FastCUT [8] Contrastive learning 46.87 ± 2.28 52.39 ± 2.31 67.73 ± 2.14
HalluciDet (ours) Detection 63.28 ± 3.49 56.48 ± 3.39 88.34 ± 1.50

Table 1. Performance comparison of models on IR images using
LLVIP dataset [4]. The table showcases the impact of different ap-
proaches, including pixel manipulation techniques, U-Net, Cycle-
GAN, CUT, FastCUT, and HalluciDet. The detectors were trained
with RGB data and evaluated on IR.

4. Experimental results and analysis

Main Comparative Results. In Table 1, we investi-
gate how our model behaved in comparison with standard
image-to-image approaches and classical computer vision
approaches that are normally used to reduce the distribution
gap between IR and RGB. Furthermore, we highlight the
impact of using the proposed Lhall loss to guide the repre-
sentation. This is accomplished by comparing our approach
with a U-Net that shares the same backbone as ours but em-
ploys a standard LL1 reconstruction loss. Furthermore, we
included CycleGAN, which is a more powerful generative
model compared with UNet. It is important to mention that
training the CycleGAN is computationally more demand-
ing than the HalluciDet. Additionally, due to the adversar-
ial nature of the method, it does not ensure reliable con-
vergence for the subsequent detection task. Because Cycle-
GAN introduces significant noise to the images as a result
of its adversarial training, the detector’s performance has

notably decreased. This is particularly evident due to the
increase in false positives. Given that our final goal is ob-
ject detection, we selected FCOS, RetinaNet, and Faster R-
CNN, each representing distinct categories within the uni-
verse of detection networks. As indicated in the table, our
results demonstrate a significant improvement over previ-
ous image-to-image translation techniques in terms of de-
tection performance. HalluciDet Visual Output: In Figure
3, we present a Hallucination image and compare it with
both RGB and IR. The Hallucination emphasizes the per-
son while smoothing the background, helping the detector
to distinguish the regions of interest. In contrast to RGB,
our method allows for easy person detection even in low-
light conditions. However, IR images may introduce ad-
ditional non-person-related information that could bias the
detector. A visual comparison with FastCUT is also pro-
vided, revealing a correlation between the method’s low
performance and the high number of False Positives de-
tected. It is important to note that while we show the Hal-
lucination for representation demonstration, our main goal
is on detection metrics. In the Figure 3, the ground truth
bounding box annotations are shown in yellow on the RGB
images. The corresponding detections obtained from the IR
data are presented in the following lines. It is important to
note that we display the predicted detections on top of the
intermediate representation for convenience. However, the
actual inputs for HalluciDet approaches and FastCUT are
IR images. A significant number of False Positives can be
observed for FastCUT, while HalluciDet (FCOS) and Hal-
luciDet (RetinaNet) exhibit a high number of False Nega-
tives. The most accurate detection results are achieved with
HalluciDet (Faster R-CNN), which demonstrates superior
performance to the IR fine-tuned model in cases where the
person’s heat signature is not clearly evident, as seen in the
last column.

Method
AP@50↑

Test Set IR (Dataset: LLVIP)
No Adaptation Fine-tuning HalluciDet

FCOS 47.12 ± 4.32 63.79 ± 0.48 64.85 ± 1.46

RetinaNet 50.63 ± 3.22 76.26 ± 0.75 56.78 ± 3.85

Faster R-CNN 71.51 ± 1.16 84.94 ± 0.15 90.92 ± 0.20

Test Set IR (Dataset: FLIR)
No Adaptation Fine-tuning HalluciDet

FCOS 38.52 ± 0.79 42.22 ± 1.04 49.18 ± 0.99

RetinaNet 44.13 ± 2.01 47.87 ± 2.21 49.01 ± 4.08

Faster R-CNN 55.85 ± 1.19 61.48 ± 1.55 70.90 ± 1.35

Table 2. AP performance for various models following distinct
training approaches on two datasets of LLVIP [4] (top half) and
FLIR [3] (bottom half): starting from COCO pre-training and fine-
tuning on the RGB data shown as (No Adaptation) and fine-tuning
on the IR data shown as (Fine-tuning).

Comparison with fine-tuning: We performed an evalu-
ation of both RGB and fine-tuned IR detectors that were



a) RGB - Ground Truth annotations.

b) IR (Faster R-CNN) - Detections of the Fine-tuned model on the IR images.

c) FastCUT (Faster R-CNN) - Detections of the RGB model on the transformed images.

d) HalluciDet (Faster R-CNN) - Detections of the RGB model on the transformed images.

Figure 3. Illustration of a sequence of 8 images of LLVIP dataset. The first row is the RGB modality, then the IR modality, followed by
FastCUT and different representations created by HalluciDet over various detectors.

trained on the LLVIP and FLIR datasets, see Table 2. In
this experiment, we compare three different approaches to
adapt a model trained on RGB images to IR. As baseline
we consider the case of No Adaptation. Then, we consider
IR fine-tuning, which is the most common way of adapta-
tion when annotations are available. Finally, our HalluciDet
to generate a new representation of the image for the RGB
detector. As seen in Table 2, in all cases, the fine-tuned IR
model outperformed the RGB detector over the IR modal-
ity, as expected. In the table, we also observe a significant
improvement in the performance of HalluciDet compared
to the performance achieved through fine-tuning for Faster
R-CNN. This improvement aligns with the quality of the
representation observed in Figure 3, where confusing fac-
tors, such as car heat, have been removed from the image.
Hallucidet with a different number of training samples:
For the LLVIP dataset, in Figure 4, we explored various
quantities of training samples for our method, ranging from
1% to 100%. Notably, only 30% of the data was sufficient
for HalluciDet to achieve comparable performance to the
fine-tuned Faster R-CNN with the complete dataset.

5. Conclusion
In this work, we provided a framework that uses privileged
information of an RGB detector to perform the image-to-
image translation from IR. The approach involves utilizing
a Hallucination network to generate intermediate represen-
tations from IR data, which are then directly input into an
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Figure 4. AP@50 vs. training samples percentages. The figure
shows the AP@50 over the LLVIP test set using various amounts
of training samples for the HalluciDet Faster R-CNN.

RGB detector. An appropriate loss function was also pro-
posed to lead the representation into a space that allows
for the enhancement of the target category’s importance.
Our Hallucidet demonstrated a significant performance im-
provement compared to the other methods. Finally, the pro-
posed framework offers the additional advantage of main-
taining performance in the RGB task, which is beneficial
for applications requiring accurate responses in both modal-
ities.
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