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Abstract

Face morphing is a problem in computer graphics with
numerous artistic and forensic applications. It is challeng-
ing due to variations in pose, lighting, gender, and ethnicity.
This task consists of a warping for feature alignment and
a blending for a seamless transition between the warped
images. We propose to leverage coord-based neural net-
works to represent such warpings and blendings of face
images. The results of our experiments indicate that our
method is competitive with both classical and generative
models. The source-code for our method may be found at:
https://github.com/schardong/ifmorph

1. Introduction
Image warping is a continuous transformation mapping
points of the image support to points in a second domain.
The process of warping an image has applications ranging
from correcting image distortions caused by lens or sensor
imperfections [5] to creating distortions for artistic/scientific
purposes [4]. Warping finds a special application in creating
image morphings [6], where it is used to align corresponding
features. By gradually aligning the image features using the
warping, we obtain a smooth transition between them.

We assume the warpings to be parameterized by smooth
maps. Besides obtaining smooth transitions, this allows us
to use its derivatives to constrain the deformation, such as
approximating it as a minimum of a variational problem.
Feature alignment can be specified using landmarks to estab-
lish correlations between two images.

In this work, we use coord-based neural networks, which
we call neural warpings, to parameterize image warpings.
This approach enables us to calculate the derivatives in
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closed form, eliminating the need for discretization. We
also employ a time parameter, to represent smooth transi-
tions. By incorporating the derivatives into the loss function,
we can regularize the network and easily add constraints by
summing additional terms. To train a neural warping, we
propose a loss function consisting of two main terms. First,
a data constraint ensures that the warping fits the given key-
point correspondences. Second, we regularize the neural
warping using the thin-plate energy to minimize distortions.

We use neural warping to model time-dependent morph-
ings of face images, thus aligning the image features over
time. Afterward, we explore the flexibility of coord-based
neural networks to define two blending techniques. First,
we blend the aligned image warpings in the signal domain
using point-wise interpolation. Second, we propose to blend
the image warpings in the gradient-domain of the signals.
For this, we introduce another network to represent the mor-
phing and train it to satisfy the corresponding variational
problem. An extended version of this work presents addi-
tional experiments and ablation studies to corroborate our
claims [14].

Our contributions can be summarized as follows:
• The introduction of a time-dependent neural warping

which encodes in a single network the direct and inverse
transformations needed to align two images along time.
We use the warping to transport the images and their deriva-
tives from the initial states to intermediate times.

• The neural network is smooth, both in space and time,
enabling the use of its derivatives in the loss function. We
exploit it to define an implicit regularization using the
thin-plate energy which penalizes distortions. Thus, the
landmarks follow a path that minimizes this energy instead
of a straight line, as in classical approaches.

• The neural warping model is compact. We achieved ac-
curate warping using a MLP composed of a single hidden
layer with 128 neurons, although our ablation studies indi-
cate that smaller networks would work for specific cases.

https://github.com/schardong/ifmorph
https://schardong.github.io/ifmorph


• We blend the resulting aligned image warpings to define a
time-dependent morphing, distinguishing it from current
methods that focus on a single blend. For the case of
blending in the gradient-domain, we use another neural
network (neural morphing).

2. Related Works
The first algorithms for face morphing were simple cross-
dissolves, i.e., pixel interpolation between target images [16].
However, the resulting morphings are substandard unless the
images are aligned, resulting in artifacts. To overcome this,
mesh-based alignment was used before the interpolation
stage, shifting the complexity to the image alignment. Beier
and Neely [2] further refined the process using line corre-
spondences and an interface to align them. Liao et al. [10]
exploited halfway domains, thin-plate splines, and structural
similarity to create a discrete vector field to warp the images.

The above morphing approaches are landmark-based, as
is ours. Recently, generative methods, such as StyleGANs [7–
9] and diffAE [13], have also been used to interpolate be-
tween faces. In contrast to these methods, ours is smooth in
both time and space, as we have a differentiable curve track-
ing the path of each image point during warping. Moreover,
our approach exploits the recent implicit neural represen-
tations, which employ coord-based neural networks [15]
to parameterize the images. Hence, we eliminate the need
for interpolation and image resampling. This approach has
also been used in the context of generative models [1] and
multiresolution image representation [11].

Furthermore, by implicitly representing the images, we
obtain their derivatives in closed form through automatic
differentiation, which is not possible with previous landmark
and generative approaches. This allows efficient use of the
gradient during the training/analysis. Moreover, composing
the warping and images results in the warped images with
gradients given by the product of the warping Jacobian and
the image gradient.

An important step in our warping is the incorporation of
the time variable as input of the neural warping. Combined
with the above advantages, this enables the creation of con-
tinuous, smooth, and compact warpings. This also allows
us to constrain the landmark paths over time by minimizing
distortions, unlike classical methods.

Our morphing approach disentangles the warping from
the blending. This allows for the use of different blendings,
such as Poisson image blending.

3. Methodology
3.1. Background and Notation
We represent an image by a function I : Ω ⊂ R2 → C,
where Ω is the image support and C is the color space,
and parameterize it using a (coord-based) neural network
Iθ : R2 → C with parameters θ. To train the neural image Iθ
such that it approximates I, we can optimize

∫
Ω
(I − Iθ)

2
dx.

This work explores coord-based neural networks to morph
neural images using a novel neural warping approach.

We assume that a coord-based neural network is a sinu-
soidal multilayer perceptron (MLP) fθ(p) : Rn → Rm de-
fined as the composition fθ(x)=Wd◦fd−1◦· · ·◦f0(x)+bd
of d sinusoidal layers fi(xi)=sin(Wixi+bi)=xi+1, where
Wi ∈ Rni+1×ni are the weight matrices, and bi∈Rni+1 are
the biases. The union of these parameters defines θ. The
integer d is the depth of fθ and ni are the layers widths.

The MLP fθ is smooth because its layers are composed of
smooth maps, and we can compute its derivatives in closed
form using automatic differentiation. This property plays an
important role in our method since it allows using derivatives
for implicit regularization of the warpings and morphings.

3.2. Overview of Neural Morphing
This section introduces the neural morphing of two images.
It consists of a neural warping to align the features of the
image and a neural blending of the resulting warped images.

Specifically, let I0, I1 : R2 → C be two neural images,
we represent their neural morphing using a (time-dependent)
neural network I : R2× [0, 1] → C subject to I(·, i)= Ii(·),
for i=0, 1. Thus, for each t we have an image I(·, t), and
varying t results in a video interpolating Ii. To define the
morphing I, we disentangle the spatial deformation (warp-
ing), used to align the corresponding features of Ii along the
time, from the blending of the resulting warped images.

For the warping, we use pairs of landmarks {pj , qj}, with
j ∈ N∗ being the landmark index, sampled from the domains
of I0 and I1 providing feature correspondences. Then, we
seek a warping T : R2×[−1, 1] → R2 satisfying the data
constraints:
• The curves T(pj , t) and T(qj , t− 1), with t ∈ [0, 1], has
pj and qj as end points;

• For each t ∈ (0, 1), we require T(pj , t) = T(qj , t− 1).
Thus, the values I0(pj) and I1(qj) can be blended along the
path T(pj , t). In points x ̸= pj , we employ the well-known
thin-plate energy to force the transformations to be as affine
as possible. The resulting network T deforms Ii along the
time resulting in the warpings Ii :R2×[0, 1]→C defined as:

Ii(x, t) := Ii
(
T(x, i− t)

)
. (1)

Given a point (x, t), to evaluate x in Ii we move it to time
t = i, for i=0, 1, which is done by xi := T(x, i− t). Note
that for x0 and x1, we need the inverse and direct of T since
it employs negative and positive time values.

Then we obtain the image values by evaluating Ii(xi).
Moreover, we can move a vector vi at xi to x, at time t,
considering the product vi ·Jac(T(x, i− t)), where Jac is the
Jacobian. In Section 3.4, we use such property and consider
vi = ∇Ii(xi) to blend the images in the gradient domain.

We blend the resulting aligned warpings Ii to define
the desired morphing I : R2 × [0, 1] → C. We use two



blending approaches: a simple linear interpolation I =
(1−t)I0+tI1, and blending in the gradient domain using
the Poisson equation.

The following steps summarize the procedure of morph-
ing two images Ii:
• Extract key points {pj , qj} in the domains of the face

images I0 and I1, providing feature correspondence.
• Define and train the neural warping T : R2 × R → R2

to align the key points {pj , qj} while penalizing distor-
tions using the thin-plate energy. This produces the image
warpings Ii that align the features of Ii along time;

• Blend Ii to define the morphing I: R2× R→C of Ii.
Besides linear interpolation, we also consider a representa-
tion for Iusing a sinusoidal MLP and exploit its flexibility
to train in the gradient domain.

3.3. Neural warping
This section presents the neural warping, a neural network
that aligns features of the target images along time. Precisely,
we model it using a sinusoidal MLP T : R2 × [−1, 1] → R2,
and require the following properties:
• T(·, 0) is the identity (Id);
• For each t∈ [−1, 1], we have that T−t is the inverse of Tt.
The corresponding deformation of an image I : R2 → C
by T is defined using I(·, t) = I ◦ T(·,−t) which uses the
inverse T−t of Tt. That is one of the reasons we require the
inverse property. In fact, if T holds such a property, there is
no need to invert the direct warp Tt, which is a difficult task
in general. For simplicity, we say that I is a warping of I.
Note that at t = 0, we have I(·, 0) = I because T(·, 0) = Id.
Thus, I evolves the initial image I along time.

We could avoid using the inverse map T−t by employing
a sampling {Iij} of I on a regular grid {xij} of the image
support. Then, {Iij} are samples of the warped image I ◦
T−t at points {Tt(pij)}. However, this approach has the
drawbacks of resampling I◦T−t in a new regular grid which
can result in holes and relies on interpolation techniques.
Our method avoids such problems since it will be trained to
fit the property Tt ◦ T−t = Id for t ∈ [−1, 1].

Observe that, for each t, the map Tt approximates a dif-
feomorphism since it is a smooth sinusoidal MLP with an in-
verse also given by a sinusoidal MLP T−t since Tt◦T−t= Id.

3.3.1 Loss function
Let I0, I1:R2→C be neural images and {pj , qj} be the source
and target points sampled from the supports of I0 and I1 that
provide feature correspondences. Let T : R2×R → R2

be a sinusoidal MLP, we train its parameters θ so that T
approximates a warping aligning the key points pj and qj
along time. For this, we use the following loss functional.

L(θ) = W(θ) + D(θ) + T(θ). (2)

Where W(θ), D(θ), T(θ) are the warping, data, and thin-
plate constraints. W(θ) requires the network T to satisfy
the identity and inverse properties of the warping definition.

W(θ)=
∫
R2

∥T(x, 0)−x∥2dx

︸ ︷︷ ︸
Identity constraint

+
∫

R2×R

∥∥T
(
T(x, t),−t

)
−x

∥∥2
dxdt

︸ ︷︷ ︸
Inverse constraint

. (3)

The identity constraint forces T0 = Id and, the inverse con-
straint asks for T−t to be the inverse of Tt for all t ∈ R.

The data constraint D(θ) is responsible for forcing T to
move the source points pj to the target points qj such that
their paths match along time. For this, we simply consider:

D(θ) =

∫
[0,1]

∥T(pj , t)− T(qj , 1− t)∥2 dt (4)

Note that D is asking for T(pj , 1) = qj and T(qj ,−1) = pj
because at the same time W is forcing the identity property.
Moreover, it forces T(pj , t) = T(qj , 1− t) along time, thus,
as observed at the beginning of this section, this is the re-
quired property for the key points {pj , qj} be aligned along
time. Since we assume T to be a sinusoidal MLP, the result-
ing warping provides a smooth deformation that moves the
source points to the target points.

However, Ddoes not add restrictions on points other than
the source and target points. Even assuming T to be smooth
the resulting warping would need some regularization, such
as minimizing distortions. For this, we propose a regulariza-
tion which penalizes distortions of the transformations Tt

using the well-known the thin-plate energy [3, 5]:

T(θ) =

∫
R2×R

∥Hess (T) (x, t)∥2F dxdt. (5)

Tregularizes T and works as a bending energy term penaliz-
ing deformation, at each space-time point (x, t), based on the
derivatives of T. This helps eliminate global effects that may
arise from considering only data and warping constraints.
It is important to note that we have incorporated the time
variable into the thin-plate energy T.

By using a sinusoidal MLP to model T and training it
with Wwhile regularizing with the thin-plate energy, we
achieve robust warpings, see Fig 1 for an alignment between
two images.

3.4. Neural Blending
Let Ii :R2→C be two neural images and T : R2 × R→R2

be a neural warping aligning their features. Specifically, the
images Ii are deformed by T along time and Eq 1 gives the
corresponding warpings Ii(x, t) = Ii

(
T(x, i − t)

)
. Then,

we blend Ii or their derivatives to construct a morphing
I : R2 × R → C of the initial images Ii. A naive blending



Figure 1. A neural warping T continuously aligning two face im-
ages along time. We use T to create their aligned warpings Ii. The
morphing (1−t)I0+tI1 was sampled at t = 0, 0.25, 0.5, 0.75, 1.

approach could be defined directly from Ii by interpolating
using I(x, t) = (1− t)I0(x, t) + tI1(x, t). Thus, at t = 0
and t = 1, we obtain I0 and I1, respectively (See Fig 1).
Note that I is a smooth function both in time and space.

3.4.1 Blending in the gradient domain
Interpolating Ii does not allow us to keep parts of one of the
images unchanged during the morphing, e.g. the comple-
ment region of the face. To address these issues, inspired
by the Poisson image editing technique [12], we propose to
blend Ii by solving a boundary value problem in R2 × R to
handle smooth animations and model Iby a neural network.

We use the Jacobians Jac(Ii) of the warpings Ii to train
I. We restrict the morphing support to S=[−1, 1]2×[0, 1],
with [−1, 1]2 representing the image domain and [0, 1] is the
time interval. Let Ω ⊂ S be an open set used for blending Ii,
such as the interior of the face path, and let I∗:S→R be
a known function on S − Ω (it could be either I0 or I1).
Finally, let U be a matrix field obtained by blending Jac(Ii),
for example, U = (1 − t)Jac(I0) + tJac(I1). A common
way to extend I∗ to Ω is by solving:

min

∫
Ω

∥Jac(I)−U∥2dxdt subject to I|S−Ω=I∗|S−Ω. (6)

We propose to use this variational problem to define the
following loss function to train the parameters θ of I.

M(θ)=
∫
Ω

∥Jac(I)− U∥2 dxdt︸ ︷︷ ︸
C(θ)

+
∫
S−Ω

(I− I
∗)2dxdt︸ ︷︷ ︸

B(θ)

. (7)

The cloning term C(θ) fits I to the primitive of U in Ω, and
the boundary constraint B(θ) forces I=I∗ in S−Ω. Thus,
M trains I to seamless clone the primitive of U to I∗ in Ω.
Unlike classical approaches that rely on pixel manipulation,
seamless cloning operates on the image gradients.

Since the images Ii contain faces and T aligns their fea-
tures, we define Ω as the path of the facial region over
time. Specifically, let Ω0 be the region containing the face
in I0, define Ω by warping Ω0 along time using T, i.e.,
Ω = ∪t∈[0,1]Tt(Ω0). Note that the deformation of Ω0 uses
the direct deformation Tt while the warped image I0 uses

the inverse T−t. The use of both inverse/direct deformations
encoded in our neural warping avoids the need to compute
inverses at inference time. Finally, for each t, T aligns the
faces Ii in the region Tt(Ω0). Thus, M trains I to morph
the face in I0 into the face in I1 while cloning the result to
I0 on S − Ω.

Besides choosing U as a linear interpolation of Jac(Ii),
which we call the averaged seamless cloning case, we could
choose U = Jac(I1) and I∗= I0. So, the resulting loss
function M forces I to seamless clone the face I1 to the
corresponding region of I0.

It may be desirable to combine features of Ii, however an
interpolation of Jac(Ii) can lead to loss of details. To avoid
it, we extend the approach in [12], which allows mixing the
features of both images. At each (x, t), we retain the stronger
of the variations in the warpings by choosing U=Jac(I0)
if ∥Jac(I0)∥>∥Jac(I1)∥, and U=Jac(I1), otherwise. The
resulting loss function M forces I to learn a mixed seamless
clone of Ii. Fig 2 shows examples of neural blending.

No warping seamless cloning average cloning mixed cloning

Figure 2. Comparing different neural blendings of two faces Ii.
Line 1/2 shows examples of cloning the half-space region of I1 into
I0. In Column 1 we do not align the image landmarks, the remaining
columns use our neural warping for the alignment. Column 2 uses
U=Jac(I1) and I∗=I0 in the neural blending. Columns 3 and 4
applies the mixed and normal seamless clone respectively.

4. Conclusions
We proposed a face morphing by leveraging coord-based
neural networks. We exploited their smoothness to add en-
ergy functionals to warp and blend target images seamlessly
without the need of derivative discretizations.

Our method ensures continuity in both space and time
coordinates, resulting in a smooth transition between im-
ages. By operating on a smooth representation of the un-
derlying images, we eliminate the need for pixel interpola-
tion/resampling.The seamless blending of the target images
is achieved through the integration of energy functionals,
ensuring their harmonious clone. The resulting morphs ex-
hibit a high level of visual fidelity and maintain the overall
structure and appearance of the target faces.
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