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Abstract

In the realm of computer vision, material segmentation
of natural scenes represents a challenge, driven by the com-
plex and diverse appearances of materials. Traditional ap-
proaches often rely on RGB images, which can be deceptive
given the variability in appearances due to different light-
ing conditions. Other methods, that employ polarization or
spectral imagery, offer a more reliable material differenti-
ation but their cost and accessibility restrict their everyday
usage. In this work, we propose a deep learning framework
that bridges the gap between high-fidelity material seg-
mentation and the practical constraints of data acquisition.
Our approach leverages a training strategy that employs a
paired RGBD-spectral data to incorporate spectral infor-
mation directly within the neural network. This encoding
process is facilitated by a Spectral Feature Mapper (SFM)
layer, a novel module that embeds unique spectral charac-
teristics into the network, thus enabling the network to infer
materials from standard RGB-D images. Once trained, the
model allows to conduct material segmentation on widely
available devices without the need for direct spectral data
input. In addition, we generate the 3D point cloud from the
RGB-D image pair, to provide a richer spatial context for
scene understanding. Through simulations using available
datasets, and real experiments conducted with an iPad Pro,
our method demonstrates superior performance in material
segmentation compared to other methods. Code is available
at: https://github.com/Factral/Spectral-
material-segmentation

1. Introduction

Image segmentation consists on classifying pixels into mul-
tiple homogeneous regions, with each region exhibiting
similar properties. In particular, material segmentation
seeks to classify these pixels based on the objects’ mate-
rial rather than in terms of the objects themselves, as it is

Figure 1. Overview of the training process and resulting output us-
ing an RGB-D input. The system employs Lrecon for reconstruc-
tion of the spectral cube and Lseg for optimizing the segmentation
task. A point cloud is then created using an xyz projection.

the case in semantic segmentation. This task is valuable
as it provides the foundational blocks for various applica-
tions such as haptics [9], robotic navigation [31], acous-
tic simulation [2], and grasping [5]. Unlike semantic seg-
mentation, material segmentation is more challenging since
spectral reflectance signatures of objects are preferred over
color information, for high reliability. However, acquiring
spectral information is not an easy nor cheap task, and its
mainstream usage is still restricted to laboratories or remote
sensing platforms.

In contrast, RGB images are ubiquitous, and color sen-
sors are within the reach of our hand. Nonetheless, ex-
tracting material from just 3 channels is challenging, if not
impossible, and unreliable. With the advent of deep learn-
ing, some alternatives were proposed to do material seg-
mentation from RGB images. Examples include UPerNet
[33], which integrates object detection, semantic segmen-
tation, and material segmentation to enhance overall per-
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formance, DMS-25 [28] that leverages the largest densely
annotated material segmentation dataset to date, and MAC-
CNN [26], which focuses on local patch material recogni-
tion. These works have contributed valuable insights, col-
lectively exhibiting moderate performance when compared
to their semantic segmentation counterparts, a field nearing
resolution through advances like SAM [13] and SegFormer
[34]. This performance gap can be attributed to two pri-
mary challenges: the scarcity of large annotated datasets
for material segmentation and the complexity of material
appearance classification, exacerbated by phenomena such
as metamerism, where identical RGB values may represent
different materials. Addressing this gap, recent works have
explored alternative data modalities such as, the use of in-
frared and polarization data in multimodal material segmen-
tation [16], and hyperspectral imagery for enhanced road
material segmentation [20], demonstrating significant im-
provements. However, these methods are often impractical
for everyday use due to the prohibitive cost and complexity
of the required equipment.

A recent work, coined MatSpecNet [12], has made
strides by proposing a physically-constrained reconstruc-
tion of hyperspectral images for comparison against exist-
ing material databases, along with semantic segmentation
information for the task of material segmentation. Despite
its innovation, MatSpecNet’s complexity and the heavy-
weight nature of its components render it unsuitable for de-
ployment on devices with limited resouces, highlighting a
pressing need for simpler, yet effective solutions.

Motivated by this challenge, we propose a novel frame-
work that leverages convolutional neural networks (CNNs)
to conduct material segmentation from RGB images, as-
sisted by the depth map image encountered in RGB-D im-
agery, and introduces a new module, the Spectral Feature
Mapper (SFM), designed to integrate spectral information
into encoder-decoder architectures, as depicted in Figure 1,
significantly enhancing material segmentation performance.
By simplifying the integration of spectral embeddings into a
model trainable with only RGB data, our approach relies on
spectral data paired with each of the RGB images, but just
for training. At evaluation time, only the RGB-D image
pair is required. In particular, we use the Light Industrial
Building HSI (LIB-HSI) dataset [11] for simulations and
training. To test the capabilities of the proposed approach
in real experiments, we use an iPad Pro and its built-in sen-
sors to acquire a set of RGB-D image pairs of a scene of
interest. Our approach promises to not only bridge the gap
between high-fidelity material segmentation and practical
application constraints but also looks forward to pave the
way for widespread adoption of advanced material segmen-
tation techniques across a variety of consumer electronics
devices. This initiative marks a pivotal step towards the de-
mocratization of high-precision material segmentation, of-

fering a robust solution to one of the field’s most pressing
problems.

2. Related Work
Material Segmentation. Inception work on material seg-
mentation focused on recognition, which involved classi-
fying entire images into one of several material categories.
In recent years, the trend has shifted towards dense mate-
rial segmentation, i.e pixel-wise classification on images.
Typical strategies can be grouped into two main categories:
those based on RGB data and the non-RGB-based modali-
ties. RGB-based methods exploit annotated datasets such as
OpenSurfaces [3] with 19,000 images across 37 materials,
the Materials in Context Database [4] with 400,000 images
with patch-level labels for 23 materials, and the Local Ma-
terials Database [26] with 5,000 images across 16 classes
and include a tree hierarchy to structure material labels. A
work used these datasets with a CNN for pixel-level clas-
sification complemented by a semantic segmentation net-
work for additional global context clues [25]. A limitation
of these approaches is their sparse labeling, with not all the
pixels being densely annotated, due to the dataset used. To
alleviate these problems, more recently, the Dense Material
Segmentation (DMS) dataset [28] was proposed, featuring
an extensive collection of 45,000 images across 52 densely
labeled classes.

On the other hand, non-RGB methods have shown that
additional information from different sensors can enhance
the segmentation and make it more robust. For instance,
the use of the Bidirectional Reflectance Distribution Func-
tion (BRDF) has been notable for its unique association
of visual appearance with materials [30, 35]. While of-
fering distinct advantages, measuring the BRDF demands
a controlled environment, significant time, and high com-
putational resources. Other approaches combines multiple
modalities including RGB, infrared and polarization mea-
surements [16]. This combination of data enriches the in-
formation available for segmentation, leading to improved
results. Another modality uses spectral information for seg-
mentation, exploiting the fact that each material exhibits
a unique spectral signature, thus, enabling discrimination
based on material properties. A notable study [38] devel-
oped its own hyperspectral material dataset combining five
typical hyperspectral datasets, with manual material label-
ing added to them, resulting in a dataset spanning 28 spec-
tral channels from 430 to 700nm at 10nm intervals. They
employed support vector machines (SVM) for segmenta-
tion, and a CNN in a follow-up work [39]. It is impor-
tant to note that, unfortunately, this unique dataset is no
longer accessible, posing challenges for ongoing research
and replication. In line with this spectral approach, [24]
introduced the use of learned spectral filters for pixel-level
material classification. This method is limited by environ-



mental variations and depends on a complex optical setup.
RGB-D Image Acquisition. Efforts to acquire spec-

tral information along with depth maps of the same scene
have given raise to RGB-D imaging systems, such as the
Microsoft Kinect and the Asus Xtion sensor, which conven-
tionally uses an RGB color sensor and a passive or active
ranging sensor to estimate depth and spectral information,
simultaneously. These systems are limited in their expres-
sive spectral capabilities to only 3 channels, and the imaging
modalities are carried out independently via multiple sen-
sors. There exist two main modalities to acquire depth in-
formation, the one that relies on passive illumination, such
as stereo [14] and light field imaging [32], and the one that
requires active illumination, such as structured light imag-
ing (SLI) [10], time-of-flight (ToF) imaging [15] and light
detection and ranging (Lidar) [22] systems. Passive sys-
tems have the limitation that they cannot derive depth with-
out depth cues created by texture. Active systems, in con-
trast, indirectly measure the round-trip propagation delay of
a light pulse or the deformation of the pattern projected on
the scene of interest to infer depth. Given the advantages of
active illumination approaches, recent consumer electronic
devices, such as smartphones and tablets, now incorporate
this technology, thus making depth image acquisition main-
stream. An example of a sensor equipped in these devices
has shown a maximum sensing range of about 5 [27] and
great robustness to lighting conditions [8], making it suit-
able for both indoor and outdoor sensing environments.

3. Proposed Method

Our approach for material segmentation introduces a novel
framework tailored for deployment on off-the-shelf de-
vices. It significantly enhances encoder-decoder architec-
tures. The operational pipeline of our framework is depicted
in Figure 2. In Section 3.1, we provide an overview of the
framework, laying the foundation for understanding its op-
eration. Section 3.2 delves into the specifics of the Spectral
Feature Mapper (SFM) layer and its role in our model. Sec-
tion 3.3 outlines the training loss formulation, critical for
our method’s success.

3.1. Framework Overview

The proposed deep learning framework integrates multi-
ple data modalities to enhance material segmentation ac-
curacy. It particularly uses spectral information to ad-
dress misclassifications caused by the complex materi-
als appearances [26]. The framework employs a dataset
D = {(Xi,Hi,Di,Yi)}Ni=1, with N samples, where Xi ∈
Rh×w×3 represents the RGB image, Hi ∈ Rh×w×b denotes
the spectral image with b spectral bands, Di ∈ Rh×w is the
depth image, and Yi ∈ {1, . . . , c}h×w represents the ma-
terial segmentation labels for each pixel, with c being the

number of classes; h × w represent the number of pixels
along the vertical and horizontal extent, respectively.

In scenarios where RGB images are unavailable, their
approximation can be achieved by leveraging the cam-
era’s spectral sensitivity ϕk(λ) for the RGB channels k ∈
{R,G,B}. This function interacts with the spectral re-
flectance of the scene, rm,n(λ), observed at each spatial
location (m,n), m = 0, 1, . . . , h, n = 0, 1, . . . , w, where
λ represents the wavelength. The approximation process
calculates the intensity for each RGB channel and each in-
tensity location, Im,n,k, by

Im,n,k =

∫ λmax

λmin

ϕk(λ) · rm,n(λ) dλ. (1)

In the discrete scenario ϕk(λ) can be modeled as S ∈
R3×b and rm,n(λ) becomes Hi ∈ Rh×w×b. By reshaping
the latter in matrix form, H̄ ∈ Rhw×b, the operation can be
expressed as

X̄ = H̄ST (2)

where X̄ ∈ Rhw×3, is then reshaped back to X ∈ Rh×w×3

which represents the RGB image. This is done for all the N
samples Hi in D.

On the other hand, in scenarios where the depth image
Di is not present in D, it can be generated through an infer-
ence process using a dedicated neural network tailored for
depth estimation from RGB [40], following

Di = fΘd
(Xi), (3)

where fΘd
denotes the dedicated neural network function

for depth estimation, parameterized by Θd, and Xi is the
input RGB image.

The heart of our framework is anchored in an encoder-
decoder network, fΘ, designed to reconstruct hyperspec-
tral images from RGB-D inputs; this is formalized as fΘ :
Rh×w×4 → Rh×w×b. These architectures have proven
to be highly efficient for reconstruction [6, 37], owing to
their ability to learn complex mappings from input to output
spaces. The output of this reconstruction process is subse-
quently passed through the SFM layer, our proposed mod-
ule, which improves the material segmentation prediction
by leveraging embedded spectral information.

Once trained, our model only requires RGB-D images
as input to predict the material segmentation map yi. From
this segmentation and the depth map image Di, we can di-
rectly generate a point cloud P ∈ {(x, y, z,yi)}, thereby
translating depth into spatial coordinates (x, y, z) and as-
sociating each point with a material class yi. This capa-
bility inherently enhances scene understanding. A compre-
hensive illustration of our framework and its components
is provided in Figure 2, which delineates the flow from in-
put acquisition through material segmentation and to point
cloud generation.



Figure 2. Illustration of the proposed framework utilizing the Spectral Feature Mapper (SFM) layer for RGB-D image processing. An off-
the-shelf device captures an RGB image along with depth information, which is then processed by an encoder-decoder network producing a
hyperspectral reconstruction Ĥ. This reconstruction is operated on by the SFM layer using learned spectral embeddings to achieve material
segmentation. Furthermore, a segmented point cloud is generated leveraging the captured depth data.

Figure 3. Visualization of the operation in the SFM layer, where Ĥ
denotes the reconstructed hyperspectral cube from fθ , and M rep-
resents learned spectral embeddings. A pixel is selected to com-
pare two spectral signatures; α denotes the similarity angle. This
process is repeated for every pixel in the image, and the smallest
α is selected indicating the material of the pixel.

3.2. Spectral Feature Mapper (SFM) Layer

Inspired by the proven success of material classification
strategies in remote sensing [19, 21], we introduce the SFM
layer, a novel component seamlessly integrated into our
deep learning framework. This layer is designed to uni-
versally enhance encoder-decoder architectures parameter-
ized by fΘ. The technique is grounded in the remote sens-
ing practice of comparing an observed spectral signature
against a database of known material spectral responses.
The material that minimizes the spectral angle α to the ob-
servation is identified as the matching label. This approach,
relying either on a comprehensive database of material re-
sponses or the use of linear unmixing, has demonstrated ex-
ceptional capabilities in distinguishing materials based on
their unique spectral signatures [7, 23, 24].

The mathematical foundation of the SFM layer adapts
the traditional approach to calculating spectral angles, treat-
ing the spectral signatures as vectors in a b-dimensional
space; recall that b denotes the number of spectral bands.
Unlike the standard method, our modification involves tak-
ing the negative of the spectral angle α between two ma-
trices containing the spectral curves, Ĥ ∈ Rh×w×b (recon-
structed spectrum) which is reshaped to ¯̂

H ∈ Rhw×b and
M ∈ Rc×b (materials spectrum), as follows:

α = − cos−1

(
¯̂
H ·MT

∥ ¯̂H∥∥M∥

)
, (4)

where (·) denotes the dot product, ∥ · ∥ is the Euclidean
norm, α ∈ Rh×w×c is the output angles. Ĥ corresponds
to the output of the encoder-decoder fθ and M corresponds
to the matrix of embeddings that will be learned and will
contain the spectral information corresponding to each ma-
terial. Figure 3 depicts the operation conducted in the SFM
layer.

To ensure the correct operation of cos−1, it is essential
to perform a clipping of its argument to the range (−1, 1).
This clipping step guarantees that the computed angles fall
within the feasible domain of the inverse cosine, thereby
avoiding undefined mathematical operations. Note that tak-
ing the negative of the cosine inverse transform, allows
them to be treated as logits in the segmentation framework,
where the softmax function and cross-entropy loss are typi-
cally employed, and calculated as,

ŷ = softmax(α). (5)

Our approach guarantees that small angles, indicating
closer spectral signature matches, are assigned higher prob-
abilities after the softmax operation, in contrast to larger
angles, which indicate a lesser degree of spectral signa-
ture similarity, and are thus attributed lower probabilities.
This inversion of angle values allows for an intuitive inte-
gration into conventional segmentation workflows, where



Algorithm 1: PyTorch-style pseudocode for SFM layer
# h:output of encoder-decoder network
# m:embedding of materials

def forward(h):
norm1=m/sqrt(einsum('ij, ij → i',m,m)
norm2=sqrt(einsum('bijk, bijk → bij',h,h))
dots=einsum('bij,mj → bim',h,norm1)
dots=clamp(dots/norms2.unsqueeze(-1),-1,1)
# return the angles
return -acos(dots).permute(0,3,1,2)

higher logits lead to higher probabilities ŷ. The detailed
implementation and integration of this spectral angle calcu-
lation within our segmentation framework is further elabo-
rated in Algorithm 1, where a PyTorch-style pseudocode is
presented.

By incorporating this, we enable a direct comparison of
spectral signatures of Ĥ for material segmentation, effec-
tively leveraging the unique spectral characteristics of mate-
rials as learnable parameters in M within the network. This
dimensional structuring facilitates a comprehensive pixel-
wise comparison across all pixels in the image, aligning
with the network’s segmentation loss. Furthermore, this ap-
proach is inherently compatible with backpropagation, as
all operations involved are differentiable. Thus, the SFM
layer can be seamlessly integrated into the training process,
enabling the network to learn and update its parameters ef-
ficiently.

3.3. Training Schedule

The comprehensive training of our network involves the
simultaneous training of the encoder-decoder architecture
along with the SFM layer. To ensure training stability, a
dummy ϵ is added to operations with a division, to avoid
numerical division by zero errors. This modification is cru-
cial for the robustness of the training process.

Additionally, the embedding matrix M is constrained
within the interval [0, 1]. This constraint ensures compat-
ibility with the reflectance values of H, maintaining the θ
values within the SFM layer align correctly for the accurate
execution of spectral feature mapping operations. This is
achieved through clipping at each training step, guarantee-
ing that the entire matrix remains within this specified range
bounds. In particular, the clipping process is formalized as,

Mi′,j′ ← min(max(Mi′,j′ , 0), 1), (6)

where i′ indexes the material classes and j′ indexes the
spectral bands.

On the other hand, to optimize the performance of our
network on the dual objective of material segmentation and
hyperspectral image reconstruction, we define a compos-
ite loss function that incorporates both Mean Square Error
(MSE) loss and Focal Loss (FL) [18]. The MSE component

ensures that the output of the encoder-decoder network, fΘ,
closely matches the target hyperspectral images H, thus
guiding the spectral feature extraction towards high fidelity
reconstruction. On the other hand, the FL component ad-
dresses the prevalent issue of class imbalance in material
recognition datasets. By modifying the traditional cross-
entropy loss to focus more intensively on hard-to-classify
examples, the FL component ensures that our model is par-
ticularly adept at segmenting materials that are less fre-
quently encountered and traditionally more challenging to
classify.

The overall loss function of our network is a weighted
sum of the FL for material segmentation Lseg and the MSE
loss for hyperspectral image reconstruction Lrecon:

L = ω1 · Lseg(ŷ,y) + ω2 · Lrecon(Ĥ,H), (7)

L = ω1 · FL(ŷ,y) + ω2 ·MSE(Ĥ,H), (8)

where ŷ represents the predicted segmentation labels, y
denotes the true labels, Ĥ is the reconstructed hyperspec-
tral output, H is the true hyperspectral cube, and ω1, ω2

are weights that balance the contribution of each loss com-
ponent. Empirical evidence suggests that prioritizing seg-
mentation loss (ω1 > ω2) enhances the model performance
in material segmentation tasks. The training scheme is de-
picted in Figure 1.

This strategic approach to loss function design, allows
us to simultaneously guide the network towards precise
hyperspectral image reconstruction while effectively han-
dling the complexities associated with material segmenta-
tion. The FL component, by focusing on hard-to-classify
classes, ensures that all materials, regardless of their fre-
quency in the dataset, are accurately segmented. In contrast,
the MSE component ensures that the network’s spectral re-
constructions align closely with the true hyperspectral data,
an important factor for the accurate interpretation of mate-
rial properties.

4. Simulation Results
In this section, we evaluate the proposed framework on
the publicly available Light Industrial Building HSI (LIB-
HSI) dataset [11], providing a thorough assessment of our
method. The scarcity of datasets that offer spectral-material
segmentation, particularly in natural scenes, makes LIB-
HSI a valuable resource for benchmarking state-of-the-art
approaches in this domain.

Dataset. The LIB-HSI dataset comprises 44 categories
of various materials across 513 facade images. While the
dataset primarily focuses on building facades, the scenes
are representative of natural environments. Accompanying
each image, there is a hyperspectral datacube with 512x512
spatial pixels and 204 bands, ranging from 400 to 1000 nm.
For our purpose, we kept the bands spanning 400 to 700



Figure 4. Visual comparison of material segmentation results. The first column displays the input RGB image, the second shows the ground
truth for material segmentation, the third presents the results from the FCN method [11], and the fourth column illustrates our results with
the predicted segmentation along with the segmented point cloud.

nm, and downsampled them to 31 bands. Further, each im-
age is paired with a labeled materials map and a pseudo-
RGB image. Given the absence of depth map information
within the dataset, we simulated them using the depth-from-
anything network [36] in its large version, which was em-
ployed solely for inference purposes on each dataset sam-
ple.

Architecture. For the encoder-decoder part of our net-
work, we chose a pre-trained HRNet encoder [29] and a
Feature Pyramid Network (FPN) decoder [17], known for
their strong performance in object detection and segmen-
tation tasks. At the output of this encoder-decoder net-
work, the SFM layer was applied, and the entire network
was trained.

Implementation Details. The framework was trained
using the train set of LIB-HSI, using PyTorch on four
NVIDIA T4 GPUs, with a batch size of 16, over 200
epochs. The weights for the loss function were set to ω1 = 2
and ω2 = 0.5, as these values demonstrated the best perfor-
mance through cross-validation on the first 20 epochs. Data
augmentation strategies included horizontal flipping, scal-
ing, and rotation were used. A ReduceLROnPlateau strat-
egy was employed to adjust the learning rate.

Evaluation and Metrics. To benchmark our method, we
adhered to the same metrics employed in [28] and [11], that
include pixel accuracy and mean intersection over union
(IoU) over classes.

Average Class
Input Method Accuracy IoU
RGB U-Net [11] 0.687 0.236
RGB FCN [11] 0.829 0.443

RGB-D Ours 0.8647 0.4837

Table 1. Comparison of results for different methods, in terms
of classification accuracy (%) and mean IoU over classes, on the
LIB-HSI test set.

We benchmark our proposed method against state-of-
the-art approaches that have reported results on the LIB-HSI
dataset. As demonstrated in Table 1, our method surpasses
the existing baselines across both metrics, achieving a no-
table 0.8647 in accuracy and 0.4837 in mean IoU (mIoU).
This performance leap underscores the advantage of incor-
porating spectral information into a deep learning frame-
work for material segmentation in natural scenes. Previous



Figure 5. Visual outcomes from our experimental acquisition using an iPad Pro, displaying our framework’s predictions trained on the
LIB-HSI dataset. The point clouds are generated using the depth data extracted from the LiDAR.

approaches did not utilize the available spectral data H, dis-
carding valuable information and consequently leading to
lower performance. In contrast, our framework leverages
this spectral information through the SFM layer, thereby
enhancing performance while retaining ease of capture on
standard off-the-shelf devices.

In Figure 4, a visual comparison of our results is pre-
sented, illustrating that our method achieves great perfor-
mance despite the deceptive appearances of some materials,
outperforming previous techniques. Furthermore, for each
prediction, we generate a point cloud utilizing the captured
depth information, which significantly enhances the scene’s
comprehension.

One critical aspect of our method is that the matrix M is
learned during training. Initially randomized, M converges
to represent the spectral signatures of the materials over the
course of training. This learning process allows M to em-
body a compact and discriminative spectral representation
for each material class, enhancing the model’s segmenta-
tion performance.

5. Experimental Results

To demonstrate the practicality and user-friendliness of our
framework for everyday applications, we conducted exper-
iments in a pair of real-world scenes resonant with the do-
main dataset. For this purpose, we employed an iPad Pro,
leveraging its ability to capture high-quality RGB images
and depth information through its LiDAR scanner using the
ARKit API [1]. The official ARKit SDK was utilized to
gather this data, providing depth information of up to 5 me-
ters [27]. Figure 5 illustrates the results of these acquisi-
tions, vividly demonstrating the efficacy of our proposed
framework in accurately segmenting materials within di-
verse environments. Our model was capable of effectively

identifying materials such as brick, vegetation, concrete,
and metal under various lighting conditions, showcasing its
robustness and adaptability. Through this empirical evalua-
tion, we evaluated the significance and ease with which our
framework can be applied to common environmental con-
texts.

6. Conclusions
This work presented a deep learning framework for mate-
rial segmentation that integrates embedded spectral infor-
mation within a standard RGB-D imaging workflow. Our
method capitalizes on the encoded spectral characteristics
through the Spectral Feature Mapper (SFM) layer, introduc-
ing a novel dimension to the segmentation task that extends
beyond mere visual appearances. This is particularly ad-
vantageous in complex natural scenes where lighting con-
ditions and surface textures may lead to ambiguous visual
cues. Our approach demonstrates a significant advancement
over traditional baseline RGB-based methods, effectively
utilizing spectral information without the need for special-
ized sensor equipment. The versatility of our framework is
underscored by its compatibility with readily available con-
sumer electronic devices, like the iPad Pro, used in our real-
world experiments. This accessibility paves the way for
widespread adoption and practical deployments in diverse
applications. The encouraging results make our framework
a step forward in the realm of computer vision, bridging the
gap between high-fidelity material recognition and practical
application.
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