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Abstract

Surgical tool detection in minimally invasive surgery is
an essential part of computer-assisted interventions. Cur-
rent approaches are mostly based on supervised meth-
ods requiring large annotated datasets. However labelled
datasets are often scarcely available. Semi-supervised
learning (SSL) has recently emerged as a viable alternate
and shown promise to produce models having competitive
performance with supervised methods. Therefore, in this
paper we introduce an SSL framework in surgical tool de-
tection paradigm which aims to mitigate the scarcity of
training data and the data imbalance through a knowl-
edge distillation approach. In the proposed work, we train
a model with labelled data which initialises the Teacher-
Student joint learning, where the Student is trained on
Teacher-generated pseudo labels from unlabelled data. We
also propose a multi-class distance with a margin based
classification loss function in the region-of-interest head of
the detector to effectively segregate foreground-background
region. Our results on m2cai16-tool-locations dataset in-
dicate the superiority of our approach on different super-
vised data settings (1%, 2%, 5% and 10% of annotated
data) where our model achieves overall improvements of
8%, 12% and 27% in mean average precision on 1% la-
belled data over the state-of-the-art SSL methods and the
supervised baseline, respectively.

1. Introduction

Recently, Computer-Assisted Intervention (CAI) sys-
tems capable of performing effectively the sub-tasks such as
surgical phase recognition or surgical tool recognition and
detection are getting increased attention, since the develop-
ment of these task-based automated approaches can ensure
improved surgical care (1).

In the realm of surgical tool detection, deep learning-
based approaches have increasingly become a focal point
of interest in recent years. However, the adoption of com-

plex deep learning (DL) models is hampered by the need
for extensive, precisely annotated datasets. Acquiring such
datasets is a time-consuming task, affected by susceptibil-
ity to intra and inter-observer bias in annotations. Conse-
quently, only a few labeled surgical tool datasets are pub-
licly available (3; 6), hindering the development of robust
and generalizable deep architectures for surgical instrument
detection.

Despite the potential of deep learning in transforming
surgical tool detection, existing methods predominantly rely
on supervised learning approaches (3; 12), while only a few
weakly supervised methods focusing on tool presence de-
tection (10). This limitation underscores the need for inno-
vative approaches that can circumvent the dependency on
extensively annotated datasets.

To address these challenges, the annotation cost could
be greatly mitigated by exploiting unlabeled data through
efficient semi-supervised learning (SSL) frameworks. One
way to do this is by leveraging unlabeled data for label pre-
diction by first training a Teacher model on a pretext task to
generate pseudo labels, then transferring this knowledge to
a Student network for the primary task (4; 11). This process
enriches the Student network’s predictive accuracy with in-
sights from both labeled and unlabeled data.

Although SSL has shown promising outcomes in im-
proving model performance and is receiving growing atten-
tion of the computer vision research community (9), most
of these advances are in the domain of image classification.
Furthermore, SSL for object detection had been tradition-
ally implemented by adapting state-of-the-art image classi-
fication methods such as (7) to object detection. However,
the transition from image classification to object detection
with Semi-Supervised Learning (SSL) methods is challeng-
ing due to critical differences between these tasks. Object
detection is particularly hampered by imbalances between
foreground-background and within classes, which can com-
promise pseudo-labeling efficacy and introduce biases to-
wards dominant classes. Thus, applying SSL techniques
designed for classification directly to detection risks exac-
erbating class imbalances and may result in significant over-



fitting.
To overcome these issues, we propose a jointly

trained Teacher-Student model on m2cai16-tool-locations
dataset (3) which is initialised by a supervised detector. We
argue that slowly updating the Teacher by exponential mov-
ing average (EMA) via the Student can alleviate pseudo-
labeling bias problem and improve pseudo label quality and,
hence, overall performance improvement. Additionally, we
propose a multi-class distance and margin-based classifica-
tion loss in the region-of-interest (ROI) head of the detec-
tor network to boost the classification performance. This is
achieved by maximising the distance between foreground
classes and the background. To the best of our knowledge,
our approach is the first effort towards leveraging Teacher-
Student joint training paradigm for addressing data scarcity
problem in surgical tool detection applications. We employ
strong and weak augmentation pipelines to improve model
robustness. Our proposed pipeline outperforms supervised
baseline and other SOTA semi-supervised methods in terms
of classification and localisation performance.

2. Data
2.1. Dataset

In this work, we use an extended version of the m2cai16-
tool dataset, originally released for the M2CAI 2016
Tool Presence Detection Challenge (8), now including the
m2cai16-tool-locations dataset (3). This extension provides
spatial bounding box annotations for 7 classes: grasper,
bipolar, hook, scissors, clipper, irrigator, and specimen bag,
across a total of 2812 annotated frames. Annotations were
performed under the supervision and spot-checking of clin-
ical experts, with dataset splits of 80%, 10%, and 10% for
training, validation, and testing, respectively.

2.2. Data Augmentation

We have used two data augmentation strategies in this
work, which we refer as weak and strong augmentations.
For the weak augmentation, we apply random horizontal
flips whilst for strong augmentation, we randomly perform
several photometric augmentations like grayscale, color jit-
tering, Gaussian blur, patch masking and cutout patches (2).
For the complete description of data augmentation with pa-
rameter values, please refer to Liu et al. (4).

3. Method
In this work we address multi-instance surgical tool de-

tection problem in a semi-supervised setting. Let the train-
ing set in various arrangements of labeled data sets be de-
noted as Ds = {xs

i , y
s
i }

Ns
i=1 and unlabeled data sets be

Du = {xu
i }

Nu
i=1, where Ns and Nu represent number of

supervised and unsupervised training samples while ys rep-
resent bounding box annotation of each labeled image xs.

Here, ys consists of bounding boxes for all object instances,
height and width of image and instance category names. It
is important to mention that since all the training data sam-
ples contain labels, during training we removed the labels
of the portion we categorise as unlabeled.

The overall training pipeline is divided into two stages
as shown in Fig. 1. The first stage is the initialization stage
(section 3.1), while the second is the Teacher-Student joint
learning mechanism (section 3.2).

3.1. Initialization stage

The initialization stage acts as a trigger point for
Teacher-Student joint learning. It sets the stage for the
Teacher model to be able to generate qualitative pseudo-
labels for better Student learning. In this stage, we exploit
the available labeled data Ds = {xs

i , y
s
i }

Ns
i=1 to train the

Faster-RCNN detector model (θ) with supervised lossLsup.
The standard Faster-RCNN model makes use of four losses:
RPN classification loss Lrpn

cls , RPN regression loss Lrpn
reg ,

ROI classification loss Lroi
cls and ROI regression loss Lroi

reg

(Eq. (1)).
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The weights and architecture of the model trained during
this initialization phase are then copied to be used for both
the Student and Teacher models (θT ← θ, θS ← θ). The
trained detector from this stage provides a good initializa-
tion for next stage, where we further exploit unsupervised
data to improve object detection.

3.2. Teacher-Student joint learning stage

The proposed knowledge distillation framework lever-
ages Student and Teacher joint training to address lack of
data problem. During training, Teacher generates pseudo la-
bels on unlabeled data and Student is trained on those labels.
Thus, a continuously learning Student passes on the learned
knowledge to the Teacher. We posit that this evolving mu-
tual learning would result in better detection performance
by generating stable and reliable pseudo labels. Weak and
strong augmentation pipelines ensure reliable pseudo label
generation by Teacher and diversity in Student models re-
spectively.

3.3. Student learning and Teacher update scheme

We tackle the pseudo-label noise problem which may
cause severe performance degradation (7) by confidence
thresholding (τ ). We address the duplicated box predic-
tions problem by applying class-wise non-maximum sup-
pression (NMS) before a confidence thresholding step. As
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Figure 1. Overview of the proposed Surgical tool detection model. It consists of two modules: (1) An initialisation module, where a
supervised model makes use of strongly augmented labelled data, and (2) A Teacher-Student mutual learning module, where the Student
is trained with strongly augmented unlabelled data with Teacher-generated pseudo labels. The Student transfers learned weights to the
Teacher gradually through Exponential Moving Average (EMA).

simple confidence thresholding only removes samples with
low confidence on predicted object categories and does not
take into account the quality of bounding box locations,
we do not use unsupervised loss on bounding box regres-
sion which is thus represented as below with θS as weight
updates between both supervised Lsup and unsupervised
Lunsup losses:

Lunsup =

Nu∑
i

Lrpn
cls (xu

i , ỹ
u
i ) + Lroi

cls (x
u
i , ỹ

u
i ), (2)

θS ← θS + γ
∂(Lsup + λuLunsup)

∂θS
, (3)

where γ is the learning rate and λu is the unsupervised loss
weight. The overall unsupervised loss in Eq. (2) consists of
the sum of RPN and ROI head classification losses. Eq. (3)
depicts the Student weight update scheme which includes
both supervised and unsupervised losses with a loss weight
parameter λu.

Finally, we perform Teacher model refinement by using
EMA following Mean Teacher to slowly update Teacher
network which in turn will generate stable and reliable
pseudo labels. The update can be represented as:

θT ← αθT + (1− α)θS , (4)

where α is the EMA rate, and θT , θS are the network
weights for Teacher and Student.

3.4. Logistic loss with added margin and distance
penalisation

In the surgical domain, foreground class imbalance ex-
ists in every dataset due to the fact that tool usage fre-
quency varies from one tool to another (5). We target the
foreground-background class imbalance problem by intro-
ducing a multi-class loss function based on a margin, which
tries to maximise foreground-background distance. Unlike
the focal or cross entropy losses, our proposed loss tries to
predict relative distance between inputs. Specifically, we
divide classification logits between foreground and back-
ground instances and then compute sigmoid probability, re-
spectively. We then sum the softmax of the probabilities
over all the batch for the foreground ρ and background β
instances. These probabilities are then used to maximise
foreground-background distance in the final loss computa-
tion which is in the form of a logistic loss function for clas-
sification defined as

Lroi
cls =

∑
n

wl log(1 +
es · (β − ρ+ σ)

s
), (5)

where n is the mini-batch size, wl represents loss weight, s
is the smoothness parameter and σ denotes margin.

Apart from the multi-class loss, Teacher update with
EMA will also help reduce pseudo label bias since new
Teacher is regularised by previous Teacher model which
prevents drastic movement of the decision boundary to-
wards under-represented classes.



4. Experiments and results
4.1. Implementation Details

The implementation of our proposed framework is based
on Faster-RCNN detector model with ResNet50-FPN back-
bone, whose network weights are initialized by ImageNet
pretrained model. We use a confidence threshold (τ ) of
0.7, regularization co-efficient for unsupervised loss (λu)
of 0.2 and EMA rate (α) of 0.9996. We use WarmupMul-
tiStepLR as a learning rate (α) scheduler in initialization
stage while a constant learning rate of 0.01 for the Teacher-
Student mutual learning stage. In the initialization stage, we
use strong augmentation, while during the Teacher-Student
mutual learning, we use weak augmentation for the Teacher
and strong augmentation for Student. We use a batch size
of 8 (4 labeled images and 4 unlabeled images) throughout
the experiments. We performed network training using 4
graphical processing units (GPUs) on NVIDIA Tesla P100-
SXM2-16GB system.

4.2. Results

We evaluate our model with different labeled and unla-
beled data protocols and present the results on a 10% held-
out set in Table 1. The table also includes results on the su-
pervised baseline, UnbiasedTeacher (4) with both CrossEn-
troppy and focal losses. and SoftTeacher (11). We report
results in terms of mAP evaluated at different IoU thresh-
olds, usually denoted as mAPIoU−threshold. We report re-
sults for 50%, 75%, 50:95% (average of AP values for IoU
thresholds from 50 to 95 with interval of 5).

Our experiments on m2cai16-tool dataset show the effec-
tiveness of our model in terms of mAP on various supervi-
sion protocols against the supervised setting and the SOTA
semi-supervised models.

4.3. Discussion and Conclusion

We demonstrate that our proposed approach performs
favourably against the SOTA semi-supervised models pro-
posed by (4) and (11) . In 1% setting our proposed
model outperforms unbiased Teacher with focal loss by a
large margin and cross entropy loss by a 8 points on ev-
ery evaluation metric while also outperforming SoftTeacher
(11) model. It is worth noting that our approach achieves
50.632% mAP50 on 1% labeled data which is even higher
than supervised baseline trained on 2% labeled data, and
this trend can be witnessed in all settings. This improve-
ment can be attributed to several crucial factors such as
gradual improvement in pseudo label quality through EMA
training which is in contrast to previous approaches in
which Teacher model is freezed after training on labeled
data. Another factor is the introduction of loss function
which effectively increases the foreground-background dis-
tance and helps in improving detection performance.

1% Labelled data

Method mAP50 mAP50:95 mAP75

Supervised 23.578 7.673 2.322
Unbiased Teacher* 34.374 14.145 7.855

Unbiased Teacher** 42.382 18.008 11.387
SoftTeacher (11) 38.421 13.556 6.623

Ours 50.632 20.094 12.713

2% Labelled data

Method mAP50 mAP50:95 mAP75

Supervised 47.140 18.609 9.480
Unbiased Teacher* 71.608 31.752 20.479

Unbiased Teacher** 72.416 31.490 21.446
SoftTeacher (11) 60.366 25.421 14.767

Ours 72.341 32.311 21.614

5% Labelled data

Method mAP50 mAP50:95 mAP75

Supervised 71.082 32.249 21.995
Unbiased Teacher* 84.721 42.269 32.826

Unbiased Teacher** 82.592 40.393 30.735
SoftTeacher (11) 83.211 38.857 26.643

Ours 84.427 42.392 33.376

10% Labelled data

Method mAP50 mAP50:95 mAP75

Supervised 80.193 38.640 30.625
Unbiased Teacher* 92.981 47.369 41.049

Unbiased Teacher** 90.353 45.972 45.103
SoftTeacher (11) 89.362 42.717 41.522

Ours 90.250 46.886 46.234
* Unbiased Teacher with focal loss (4)
** Unbiased Teacher with cross entropy loss (4)

Table 1. Experimental results with ResNet50-FPN as backbone

Furthermore, the proposed framework performs much
better on mAP75 in all settings consistently which indi-
cates improved localisation performance. If we compare
the performance of our model on mAP at 50:95 and 75 IoU
thresholds on the 2%, 5% and 10% labeled data settings,
we observe that our model consistently gives superior per-
formance. This validates the effectiveness of our method on
both classification and localization performance.

In this work, we tackle a multi-label, multi-class de-
tection problem by implementing an end-to-end Teacher-
Student learning with a multi-class foreground-background
distance loss. We used strong and weak augmentation
strategies to improve model robustness and class-wise NMS
and EMA to improve pseudo label quality. Our experi-
ments on m2cai16-tool dataset show the effectiveness of
our model in terms of mAP on various supervision proto-



cols against SOTA semi-supervised models.
In this paper, we addressed a lack of annotated data

problem in surgical domain for the first time by propos-
ing an end-to-end Teacher-Student learning with a multi-
class foreground-background distance loss. We used strong
and weak augmentation strategies to improve model robust-
ness and class-wise NMS and EMA to improve pseudo label
quality. Our experiments on m2cai16-tool dataset show the
effectiveness of our model in terms of mAP on various su-
pervision protocols against SOTA semi-supervised models.
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