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Tecnológico de Monterrey,
Escuela de Medicina y Ciencias de la Salud, México
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Abstract

Major Depressive Disorder (MDD) is the leading cause
of disability in the world, affecting approximately 280 mil-
lion people. Hippocampal volumetric changes have been
proposed as a potential biomarker for depression. Despite
advancements in neuroimaging studies related to psychi-
atric disorders, there remains a gap in the utilization of
these findings for clinical diagnosis and monitoring of such
disorders. This study presents a comprehensive investiga-
tion of Major Depressive Disorder (MDD) stage differentia-
tion using MRI data and a U-Net architecture for hippocam-
pal segmentation across axial, coronal, and sagittal orien-
tations. Preliminary results on the CC-359 and validation
datasets demonstrate promising segmentation performance,
especially in axial and coronal orientations. Future work
will include volumetric calculations of the hippocampus for
MDD classification according to BDI-II, and the improve-
ment of the model’s performance in terms of generalization,
ultimately contributing to the advancement of neuroimaging
research in MDD disorder.

1. Introduction
Major Depressive Disorder (MDD) is a prevalent psychi-
atric condition that affects millions of individuals world-
wide [1], and includes a wide range of clinical symptoms
such as affective, cognitive, and somatic signs [10]. MDD
is currently the leading cause of disability worldwide, af-
fecting twice as many women than men and one out of six
people at some point in their lives [16].

Imaging studies such as magnetic resonance imaging

(MRI), structural resonance imaging (sMRI), and func-
tional magnetic resonance imaging (fMRI) have emerged
as promising techniques to outline biomarkers accompany-
ing MDD. Limbic structures such as the hippocampus and
the amygdala have emerged as potential biomarkers for the
identification of MDD due to their significant role in the
neuronal circuitry controlling this disorder [5, 18] and the
volumetric changes reported in MRI studies. It has been
shown that when MDD is severe, the hippocampus volume
decreases [5, 20, 21].

Medical image segmentation for volumetric analysis has
shown promising results in improving diagnostic and treat-
ment methods. Manual segmentation is considered the
”gold standard”, but it can be time-consuming, subjective,
and unsuitable for large-scale neuroimaging research [22].
Deep learning and Convolutional Neural Networks (CNN)
models have emerged as an effective and accurate method
for automatic image segmentation. However, there are still
several challenges, such as repeatability, training, computa-
tional cost, and poor performance on unseen datasets [22].
Despite the challenges, automated approaches have shown
an acceptable correlation with volume but poor absolute ap-
proximation for small structures such as the hippocampus
[2].

FreeSurfer [5, 20], ITK-SNAP [18], AccuBrain [32],
and SACHA software [32] are some of the most widely
used software tools for fully-automatic, semi-automatic, or
manual segmentation of the amygdala and/or hippocam-
pus. Several new models based on Convolutional Neu-
ral Networks (CNN) have also been published, including
CAST, a multiscale Convolutional neural network-based
Automated hippocampus subfield Segmentation Toolbox



[31], and HippMapp3r, a 3D CNN-based algorithm for hip-
pocampal segmentation in brains with extensive atrophy
[9]. These tools, however, have yet to outperform manual
segmentation.

Despite rapid advances in neuroimaging technology and
major research funding, there is still a lack of widely used
clinical neuroimaging studies for the diagnosis or monitor-
ing of neurodevelopmental or neuropsychiatric diseases to
help physicians and patients. To overcome this difficulty,
it is critical to find brain function patterns that can predict
symptoms or behaviors in specific patients, improving our
understanding of the complexities of mental diseases. Addi-
tionally, integrating multiple types of data, such as genetic,
behavioral, imaging, and clinical data, could provide a more
comprehensive understanding of psychiatric disorders [4].

This work uses a thorough methodology to examine
brain imaging data in the context of depression differenti-
ation. A U-Net algorithm is used to examine input volumes
in three orientations (axial, sagittal, and coronal) to capture
rich spatial information inherent in each plane. 2D slices
extracted from the input volumes are used to train a binary
hippocampus segmentation model before being integrated
into a 3D volume. Volume analysis of the hippocampus
was performed to analyze the inequalities related to depres-
sion. Finally, a classifier was used to differentiate the sever-
ity of patients based on BDI-II scale and the hippocampal
volume.

2. Related Work
Recent advancements in deep learning, including Convo-
lutional Neural Networks (CNN), have shown high effi-
ciency and accuracy across various image-related tasks such
as classification [17, 23, 30] and segmentation [6, 13, 29].
In the neuroimaging field, these tools have been used for
the segmentation of brain structures [19], including limbic
structures, such as the hippocampus [8, 9, 12, 28, 31], which
plays a vital role in several brain diseases and psychiatric
disorders. This section highlights several key segmentation
models for these structures and their contributions.

Efforts to improve hippocampal segmentation resulted in
the development of numerous noticeable models. One such
model is CAST (Automated hippocampal subfield Segmen-
tation Toolbox), which is a 3D multiscale CNN model for
hippocampal subfield automatic segmentation introduced
by Yang et al. [31]. CAST is notable for its comparable ac-
curacy to state-of-the-art models in terms of dice coefficient
and also in enhancing reliability in segmenting small sub-
fields, such as CA2, CA3, and the entorhinal cortex (ERC),
as demonstrated by improved intraclass correlation coeffi-
cients (ICC).

Another notable work was presented by Thyreau et al.
[28], who proposed HippoDeep, a hippocampal segmenta-
tion model that integrates innovations such as a large and

variable training set derived from multiple cohorts, training
labels derived in part from the FreeSurfer algorithm output,
synthetic data, and a powerful data augmentation scheme
were included. Notably, HippoDeep features fast inference
times and is freely available online, supporting widespread
implementation and use.

Carmo et al. also, introduced a novel method for volu-
metric hippocampus segmentation using a tri-planar U-Net
inspired fully convolutional networks (FCNNs) [7]. By in-
tegrating improvements such as residual connections, VGG
weight transfer, batch normalization, and patch extraction
algorithms, they demonstrated a 96% volumetric dice accu-
racy in their test data.

In addition to developing hippocampus segmentation
techniques, researchers have used these models to diagnose
brain disorders. HippMapp3r, developed by Goubran et al.
[9] is a 3D CNN-based algorithm created for the detec-
tion of brain atrophy and lesions associated with aging and
neurodegeneration in the human brain. Trained using 259
manually performed segmentations collected from three
different experimental setups, HippMapp3r, outperformed
five publicly available algorithms (HippoDeep, FreeSurfer,
SBHV, volBrain, and FIRST), with an average Dice of 0.89
and a correlation value of 0.95.

Furthermore, using a T1 weighted structural MRI data,
Liu et al. [12] proposed a multimodel deep learning frame-
work based on CNN for automatic hippocampal segmenta-
tion and Alzheimer’s Disease (AD) detection. In this model,
a 3D Dense Net was built to learn the characteristics of
the 3D patches generated based on the hippocampus seg-
mentation findings for classification. This model classified
Alzheimer’s disease (AD) and normal control (NC) patients
with an accuracy of 88.9%.

These segmentation models have significantly con-
tributed to a better understanding of the hippocampus
through their accurate and robust delineation of the struc-
ture [3, 8, 10, 14, 15, 33, 34]. These studies address vari-
ous challenges related to the delimitation of 3D brain struc-
tures, brain structure variability, atrophy lesions, and small
subfield segmentation. As a result of the implementation
of these models, the diagnosis, follow-up, and monitoring
of psychiatric disorders and brain diseases. It is expected
that deep learning techniques will continue to advance in
the future, allowing more efficient segmentation methods
for brain structures to create new studies and clinical appli-
cations.

3. Materials & Methods

3.1. Data

Three datasets were utilized for the training and evaluation
of this model. The Calgary-Campinas Public Dataset and
the Validation Datasets were used for training and testing



the U-Net model and the SRPBS Open dataset is used for
the classification of MDD severity stages.

3.1.1 Calgary-Campinas Public Dataset (CC-359)

The CC-359 dataset [25] includes T1-weighted volumes ac-
quired from 359 subjects using MRI scanners manufactured
by General Electric (GE), Philips, and Siemens. Addition-
ally, the dataset includes scans acquired at two distinct mag-
netic field strengths, namely 1.5 Tesla (T) and 3 Tesla (T).

3.1.2 Validation Dataset

The validation dataset was obtained from Jafari et al.
[11]. This dataset contains 50 t1-weighted MRI scans from
epileptic and nonepileptic subjects, with manually gener-
ated hippocampal segmentation masks.

3.1.3 SRPBS Open

The SRPBS Multi-disorder MRI Dataset [27] includes
resting-state fMRI EPI images, defaced t1w images, and
optional fieldmap data for 1,410 subjects suffering from a
variety of disorders, including MDD. It also contains de-
mographic data and thorough clinical rating scales for each
illness.

3.2. Methodology

The methodology of this work was inspired by Carmo et
al. [7] and consists of a comprehensive analysis of input
volumes in all three orientations (axial, sagittal, and coro-
nal) using CNNs trained on patches specific to each orien-
tation. Binary hippocampus segmentations are conducted
on each 2D slice extracted from the input volume and then
concatenated into a single volumetric representation. Sub-
sequently, the volume of the hippocampus is calculated and
then fed into a classifier that differentiates between four
stages of severity of MDD according to BDI-II stages: min-
imal, mild, moderate, and severe.

3.3. Architecture

The architecture for this model consists of a 2D U-Net. The
architecture comprises encoder and decoder blocks. The
encoder blocks comprise convolutional layers, which are
downsampled via max pooling. The U-Net model’s encoder
blocks reduce spatial dimensions while increasing the fea-
ture map’s depth. In contrast, decoder blocks use trans-
posed convolutional layers for upsampling and skip con-
nections to preserve spatial information. Batch normaliza-
tion, dropout, and concatenation with skip connections en-
sure that features propagate and integrate properly during
decoding. Also, the U-Net’s bottleneck layer acts as a fea-
ture representation central point, allowing for the extraction
of abstract features from input images.

Figure 1. U-Net Architecture.

The model is constructed by connecting encoder and de-
coder blocks, with the encoder gradually reducing spatial
dimensions while increasing the depth of feature maps, and
the decoder upsampling and integrating those features. The
final output layer uses transposed convolutional layers with
a sigmoid activation function, which is appropriate for bi-
nary segmentation applications. This highlights the U-Net’s
capacity to capture hierarchical features effectively, making
it suited for diverse image segmentation applications, such
as medical image analysis. ”Fig. 1” shows the architecture
of this model.

3.4. Training

The model was trained separately on axial, sagittal, and
coronal MRI images. Each dataset was augmented and
batched to facilitate efficient training. The learning phase of
the model was led by Leaky ReLu activation layers, which
used the Adam optimizer in conjunction with a binary cross-
entropy loss function. The dataset was divided into training
and validation sets, with a validation split of 20%.

3.5. Volume Calculation

After training the CNN and concatenating the resulting bi-
nary mask slices into a single volume, the volume is cal-
culated by summing the volumes of the segmented voxels
[24]. The volume, V, of an object represented by a set of
voxels, S, is computed as follows:

V =
∑
uϵS

RowSpacing(u)×ColSpacing(u)×SliceSpacing(u)

(1)
where RowSpacing(u) is the distance between the center

of voxel and the adjacent voxel in its row, and ColSpac-
ing(u) and SliceSpacing(u) are similar distances in the col-
umn and z-direction, respectively.

3.6. Evaluation Metrics

For the analysis of Image Segmentation, valid metrics are
needed. Dice coefficient (DICE) [26], also known as over-



Dataset CC359 Dataset Validation Dataset
Axial Plane 0.8997 0.7547

Coronal Plane 0.8854 0.7167
Sagittal Plane 0.8173 0.7382

Table 1. DSC values for the CC-359 Dataset and an independent
validation dataset

lapping was used to measure reproducibility, this metric is
defined by

DICE =
2
∣∣S1
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⋂
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t

∣∣∣∣S1
g

∣∣+ |S1
t |

=
2TP

2TP + FP + FN
, (2)

where TP is the true positive values, FP false positives,
and FN are the false negatives.

4. Results & Discussion
The proposed method’s segmentation performance was
evaluated on a test set from the CC-359 Dataset and a vali-
dation dataset using the Dice Score Coefficient (DSC). The
DSC obtained is presented in Table 1.

The model showed promising segmentation results on
the CC-359 dataset from the three orientations. The axial
orientation achieved a DSC of 0.8997 showing that brain
structures were accurately segmented. Similarly, the model
achieved a DSC of 0.8854 in the coronal orientation, show-
casing its effectiveness in segmenting this brain structure.
However, a slight decrease in performance was observed in
the sagittal orientation, which obtained a DSC of 0.8173.
Figure 2 shows some predicted masks from this dataset.

The model’s performance remained positive after vali-
dation with an independent dataset, despite some somewhat
lower DSC. This could be caused by some of the dataset’s
patients suffering from temporal lobe epilepsy, which can
produce atrophic hippocampi and alterations in structure
and volume.

Comparing our results with existing methods, this ap-
proach exhibits competitive performance. Notably, CAST
[31] achieved Dice similarity coefficients (DSC) of 0.80 for
the left hippocampus and 0.78 for the right hippocampus,
while HippoDeep achieved a DSC of 0.85 and HippMapp3r
reached 0.89. These comparison results demonstrate the ef-
fectiveness of our proposed methodology in hippocampus
segmentation.

This work emphasizes the benefits of accounting for dif-
ferent imaging viewpoints in brain structure segmentation
tasks, with axial and coronal views showing better perfor-
mance due to richer anatomical details and clearer bound-
aries. However, issues with the sagittal view might be due
to image acquisition complications or anatomical variances
in the images. Differences between the CC-359 dataset and

Input Image Actual Mask Predicted Mask

(a) Axial Plane

(b) Coronal Plane

(c) Sagittal Plane

Figure 2. Three sample images showcasing input images, actual
masks, and predicted masks across axial (a), coronal (b), and sagit-
tal (c) planes. Data sourced from the validation set obtained from
the CC-359 Dataset.

the validation dataset highlight the importance of data diver-
sity, especially including data from subjects with alterations
in the hippocampus structure.

5. Conclusion
This study presents a throughout investigation into brain
imaging data concerning Major Depressive Disorder stage
differentiation, using a U-Net architecture to segment the
hippocampus across axial, coronal, and sagittal orienta-
tions. The models achieved promising results on both the
CC-359 and the validation dataset using 2D slice analysis.
The model was particularly effective in axial and coronal
segmentations, demonstrating its ability to capture detailed
anatomical information. Although there was a minor de-
crease in the performance of the sagittal segmentations, the
model’s robustness highlights its potential use in MDD di-
agnosis. It is important to note that these findings repre-
sent preliminary results, and future work will include vol-
ume calculations of the hippocampus to differentiate MDD
stages. Additionally, further research is warranted to opti-
mize the model’s performance by addressing the challenges
regarding dataset diversity and generalization. These ongo-
ing efforts aim to improve the model’s clinical application



and help advance neuroimaging studies in psychiatric dis-
eases.
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