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Abstract

Recent advances in instruction tuning have led to the
development of State-of-the-Art Large Multimodal Models
(LMMs). Given the novelty of these models, the impact
of visual adversarial attacks on LMMs has not been thor-
oughly examined. We conduct a comprehensive study of the
robustness of various LMMs against different adversarial
attacks, evaluated across tasks including image classifica-
tion, image captioning, and Visual Question Answer (VQA).
We find that in general LMMs are not robust to visual ad-
versarial inputs. However, our findings suggest that context
provided to the model via prompts—such as questions in a
QA pair—helps to mitigate the effects of visual adversar-
ial inputs. Notably, the LMMs evaluated demonstrated re-
markable resilience to such attacks on the ScienceQA task
with only an 8.10% drop in performance compared to their
visual counterparts which dropped 99.73%. This research
highlights a previously under explored facet of LMM robust-
ness and sets the stage for future work aimed at strength-
ening the resilience of multimodal systems in adversarial
environments.

1. Introduction
Large Multi-modal Models (LMMs) have demonstrated re-
markable abilities in a range of applications, from image
classification and Visual Question Answering (VQA) to im-
age captioning and semantic segmentation [1, 12, 16, 17,
20]. These models excel in generalizing to new domains
with data-efficient solution, a feat attributed to advance-
ments in Instruction Tuning [32]. Such techniques, tra-
ditionally applied to text-only models, have now been ex-
tended to multi-modal models, opening new avenues for ef-
ficient fine-tuning with significantly less data [12, 20].

Despite the recent advancements in LMMs, the impact
of adversarial examples still remains under explored. Typi-
cally adversarial examples are generated end-to-end, target-
ing the final loss of the whole model, and focusing on a sin-
gle modality. However, in the era of combining different
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pre-trained models with additional projectors or adaptors
[7, 20, 33], it is imperative to reevaluate the effectiveness
of these adversarial approaches. For example, let’s consider
LLaVA [20] which uses CLIP as its visual component and
LLAMA as text component (with some additional projector
to bridge the gap), will an attack on one of the two compo-
nents compromise its overall performance?

We conduct a comprehensive analysis on the robustness
of current LMMs under various adversarial attacks, tasks
and datasets. Our investigation reveals that LMMs are not
robust to adversarial visual perturbations in contexts where
no additional textual information is provided, such as in
COCO[18] classification (without context) or COCO cap-
tioning tasks. Conversely, the presence of context seems to
bolster LMM robustness, as seen in tasks like COCO clas-
sification (with context). In cases where the attack does not
directly target the core aspects of the task, such as in VQA,
LMMs display a degree of inherent robustness. This paper
reveals the following findings:
• LMMs are generally vulnerable to adversarial visual per-

turbations, even if such perturbations are generated only
w.r.t. the visual model.

• Compared to classification and caption, LMMs demon-
strate better robustness in VQA tasks. Particularly, we
find that visual attacks are less effective when the VQA
question query involves different visual contents from
what is being attacked.

• Adding additional textual context notably improves
LMMs’ robustness against visual adversarial input.

2. Related Work
Large Multimodal Models (LMMs). Large Multimodal
Models (LMMs)[3, 7, 17, 20, 33] typically comprise a vi-
sual model, a pre-trained Large Language Model (LLM),
and a projector model designed to bridge the modality gap
between images and text. Prominent among these mod-
els are LLaVA[20] and InstructBLIP [12], which represent
the current state-of-the-art in LMMs. LLaVA integrates
the CLIP visual encoder with the Vicuna LLM [9], em-
ploying a simple linear projector subsequent to the visual
model for transforming visual representations into the lan-



guage embedding space. Conversely, BLIP2-based mod-
els [12, 17, 33] utilize the EVA-CLIP visual encoder, along-
side a Q-former equipped with learnable query vectors to
bridge the visual and textual modalities. Both LLaVA and
BLIP2-based models, among others, have demonstrated re-
markable capabilities in a variety of vision-language tasks,
underscoring their versatility and effectiveness.
Adversarial attacks. Adversarial attacks are designed to
subtly manipulate inputs in a way that is typically imper-
ceptible to humans, yet can lead neural networks to pro-
duce erroneous outputs [2, 4, 5, 11, 24, 30]. These at-
tacks are broadly classified into two categories: white-
box attacks [2, 5, 14, 30], where the adversary has com-
plete access to the model parameters, and black-box at-
tacks [26, 29], where the adversary possesses limited in-
formation such as output logits or labels. In particular,
transfer-based attacks leverage gradients from a surrogate
model under white-box condition, which are likely transfer-
able to the target black-box model [13, 21, 25, 26]. Such
transferability thus remain as an critical model vulnerabil-
ity. LMMs and Adversarial Examples. While extensive
research has been conducted on adversarial attacks in both
visual and textual domains, the impact of these attacks on
current LMMs remains relatively unexplored. Recent stud-
ies [6, 22, 27, 28, 31, 34] demonstrate the feasibility of
creating adversarial examples that effectively ”jailbreak”
LMMs from both visual [6, 27] and textual [22, 28, 31, 34]
inputs, using either gradient-based approaches [6, 27] or
prompt engineering [22, 28, 31].

3. Method
3.1. Threat Model

In this study, we focus on gradient-based white-box adver-
sarial attacks [5, 11, 24]. These methods hinge on the com-
putation of the gradient to ascertain the most effective di-
rection in which to modify the input so as to deceive the
model.

3.2. Attacks

We choose Projected Gradient Descent (PGD) and Carlini-
Wagner (CW) as two representatives of strong gradient-
based attacks, along with Auto-PGD (APGD) as a variant
of PGD. Additionally, we experiment with two parameter
settings of each attack: normal and strong, based on per-
ceptibility of the perturbations.

3.3. Models

In our study, we selected three state-of-the-art LMM mod-
els for evaluation: LLaVA1.5[19] integrated with the Vi-
cuna13B language model, BLIP2 combined with the Flan
T5 XXL[10] language model, and InstructBLIP [12], also
utilizing Vicuna13b.

3.4. Tasks & Adversarial generation

We consider three popular visual tasks for evaluating visual
adversarial impact on LMMs: image classification, caption
retrieval and VQA. Since we are interested in LMMs’ ro-
bustness against visual adversaries, we generate adversarial
samples w.r.t. the image encoder of the LMM: CLIP image
encoder for LLaVA, EVA-CLIP image encoder for BLIP2
and InstructBLIP. We use CLIP text encoder and the text
encoder from BLIP’s Q-former to compute the text embed-
dings for their corresponding image encoder.
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Figure 1. Overview of our procedure for attack generation and
evaluation over image classification, caption retrieval, and VGA.
Top: overview of attack generation for the three tasks; bottom:
evaluation procedure for LMM on the three tasks.

3.4.1 Image Classification

We use COCO [18] 2014 validation split (2014val), with
class annotations from [15], to evaluate robustness on clas-
sification. We first use the text encoder to encode the text
class labels in the format of “a photo of <class>”. Then, we
compute the class-wise cosine-similarity between the image
encodings and encoded class labels and use the result as the
class logits for adversarial generation and evaluation. To
evaluate LMMs on classification, we first prompt LMMs to
generate a one-word response of the main object in the im-
age.

3.4.2 Caption retrieval

We use COCO captioning dataset [8] 2014val for evaluating
caption retrieval robustness. To generate visual adversarial
samples for caption retrieval, we first use the text encoder to
encode 5 captions per image, and then use their mean as the
text encodings for each image. Then, we compute cosine



Model Attack Pre PostN PostS

Image-to-Text Recall @1 (%)
CLIP PGD 57.72 10.4(-82) 0.4(-99)

CLIP APGD 57.72 12.92(-78) 7.44(-87)

CLIP CW 57.72 34.94(-39) 24.94(-57)

LLM Answer-to-Text Recall @1 (%)
LLaVA PGD 36.58 13.1(-64) 3.76(-90)

LLaVA APGD 36.58 15.7(-57) 7.88(-78)

LLaVA CW 36.58 32.96(-10) 29.84(-18)

Table 1. Top-1 caption retrieval result for COCO caption 2014 val-
idation dataset. Refer to Sec. 3.4.2. “Visual Encoder Accuracy”
refers to CLIP accuracy on successfully retrieving captions that
are closed to the mean caption encoding given the image encod-
ing. “Image-to-Text Recall @1” is recall@1 of retrieving correctly
one of the five captions for the given image. LLM Answer-to-Text
recall is the same except the query is the LMMs’ answers. Num-
bers in parenthesis show % change w.r.t. the Pre-attack accuracy.

similarity between image and text encodings and use the
result as the image-wise logits for adversarial generation.

3.4.3 VQA

We evaluate LMM robustness on the ScienceQA, which
contains 21k multimodal multiple-choice questions [23].

4. Experimental Results and Analysis
We show our experimental results and analysis in the fol-
lowing sections. We report both LMMs’ accuracy as well
as the image encoder’s accuracy on the task that was used to
generate adversaries. We adopt the notations Pre, PostN and
PostS to refer to accuracy for pre-attack, post-attack under
normal setting, and post-attack under strong setting, respec-
tively.

4.1. Are LMMs Robust Against Adversarial Visual
Input?

To investigate the impact of adversarial visual inputs on
LMMs, our initial analysis focuses on the caption retrieval
task. This task serves as a measure of the LMMs’ overall
comprehension of visual inputs. The results of this analysis,
conducted on COCO 2014val, are presented in Table 1. Un-
der the third section, the data distinctly illustrates a signifi-
cant decrease in post-attack accuracy across all three LMMs
when subjected to both PGD and APGD attacks, under both
normal and strong settings.

4.2. Evaluating LMMs’ VQA Performance
In this section, we detail the experimental outcomes of the
LMMs in VQA tasks under adversarial visual attacks. The
primary results are summarized in Table 2. Our results in-
dicate a noteworthy deviation from what we have observed

LLaVA: a group of cows laying down in a barn. ✓

Q1: Why is there a gap between the roof and wall?
LLaVA(adv): Ventilation. ✓

Query: What is this image about?

Q2: Why is the cow laying down?
LLaVA(adv): Resting. ✓

Q3: Is it daylight in this picture?
LLaVA(adv): Trees. ✓

LLaVA(adv): A row of colorful wooden benches with
Asian writing on them. ✗

LLaVA: A large white airplane is flying through a clear blue
sky. ✓

Q1: Was this taken at sunset?

LLaVA(adv): No. ✓

Query: What is this image about?

Q2: Is there a seagull?
LLaVA(adv): No. ✓

Q3: What color is the plane?

LLaVA(adv): Blue. ✗

LLaVA(adv): A colorful, psychedelic patterned background
features a pair of Elmo figurines from Sesame Street ✗

LLaVA: White. ✓

Figure 2. Two sample adversarial images from COCO 2014val,
generated under APGD PostS. “LLaVA” and “LLaVA(adv)” refer
to LLaVA’s responses using the clean Pre-attack and post-attack
image, respectively. Above the dotted line in each cell, we query
LLaVA for the general description; below the dotted line are ques-
tions taken from VQA V2 dataset.

about the caption retrieval task in Sec. 4.1, which did not
show that LMMs possess any robustness against visual ad-
versaries. Based on the results from Table 2, all three
LMMs being evaluated exhibit considerable resilience in
various VQA datasets, despite the significant decrease in
adversarial accuracy of their corresponding visual encoders,
as shown under the “Visual Encoder Accuracy” columns.
For instance, with the ScienceQA dataset, the PostN “Vi-
sual Encoder Accuracy” plummeted below 1% for all three
types of attacks, and for both the CLIP and BLIP visual en-
coders. However, the accuracy of all three LMMs decreased
by less than 7% compared to their pre-attack accuracy.

What could be the cause of such discrepancies in LMMs’
robustness between the VQA and caption retrieval tasks?
We make two conjectures:
1. The robustness of LMMs depends on whether the query

is about what is being attacked. Since the attack target
for generating visual adversarial samples is what is be-
ing described in the image description, then intuitively
those aspects not mentioned in the description shall be
less affected by the attack.

2. Additional contexts (e.g., contexts in ScienceQA’s ques-
tions) aid in LMMs’ robustness.

We will experimentally support the two claims in the fol-
lowing sections.

4.3. Visual Adversarial Attacks are not Universal to
LMMs

In this section, we present an empirical analysis demonstrat-
ing that while LMMs are not inherently resilient to visual



VQA Acc (%) Visual Encoder Acc (%)
Model Dataset Attack Pre PostN PostS Pre PostN PostS

LLaVA ScienceQA(image) PGD 71.59 68.77 (-3) 64.75 (-9) 42.92 10.08 (-77) 0.92 (-98)

LLaVA ScienceQA(image) APGD 71.59 69.81 (-2) 68.22 (-4) 42.83 5.68 (-87) 0.06 (-99)

LLaVA ScienceQA(image) CW 71.59 71.69 (+0.1) 71.34 (-0.3) 42.95 12.76 (-70) 0.03 (-99)

Table 2. Results on VQA datasets. We attack CLIP visual encoder to generate adversarial examples for LLaVA . Adversarial examples
are used as input image along with question as input text. “VQA Accuracy” refers to the performance of each LMM; “Visual Encoder
Accuracy” refers to the accuracy of the visual encoder on image-to-text retrieval, which is used for generating visual adversaries for VQA.
Numbers in parenthesis show % change w.r.t. the Pre-attack accuracy.

adversarial attacks, as evidenced by their performance in
caption retrieval tasks, they are capable of delivering correct
responses when the query’s focus differs from the target of
the attack. To illustrate this, we take the Visual Question
Answering (VQA) V2 dataset as a case study. Here, we
generate adversarial images using the text label “a photo
of <class>”, with the attack primarily aimed at the cen-
tral object of the image. We observe that the adversarial
attack’s effectiveness is heightened when the query, during
evaluation, pertains to the same target – the principal object
in the image. Conversely, the attack’s impact diminishes
when the query relates to different aspects of the image. In
Figure 2, we show LLaVA’s responses to queries on two ad-
versarial images under APGD-S. When querying about the
general description of the image, it is clear that LLaVA’s
post-attack answers are completely deviated from what the
image is about.

4.4. Adding Context Improves LMM Robustness

To examine the effect of context on LMMs’ robustness, we
reuse the image classification task. We first ask LLaVA to
generate a general one-sentence description for each class.
We then insert the generated description corresponding to
the correct object into the prompt for querying the LMMs
about the main object in the image. Besides the additional
context, everything else is kept the same. Results are shown
in Table 3. We observe that after adding a short sentence of
context, the post-attack accuracy for all three LMM mod-
els increase by a large margin. In particular, the accuracy
drop for BLIP2/InstructBLIP under PGD/APGD reduce to
only 20%, as opposed to an average of 60% drop without
context.

5. Conclusion
In this study, we systematically evaluate the susceptibility
of LMMs to visual adversarial inputs across a diverse ar-
ray of tasks and datasets. Our findings suggests LMMs are
highly vulnerable to visual adversarial attacks, even when
such adversaries are crafted with respect to the visual model
alone. On the other hand, we find that LMMs are “ro-
bust” when the query and attack target does not match.

Model Attack Pre@1 PostN@1 PostS@1

LMM Acc (%)
LLaVA PGD 87.51 48.25(-45) 22.58(-74)

LLaVA APGD 87.51 52.06(-41) 8.11(-91)

LLaVA CW 87.51 80.64(-8) 77.1(-12)

BLIP2-T5 PGD 86.47 28.64(-67) 2.98(-97)

BLIP2-T5 APGD 86.47 31.39(-67) 2.37(-97)

BLIP2-T5 CW 86.47 70.11(-19) 58.85(-32)

InstructBLIP PGD 89.89 21.09(-77) 3.66(-96)

InstructBLIP APGD 89.89 22.35(-75) 2.18(-98)

InstructBLIP CW 89.89 37.81(-58) 31.91(-64)

LMM with Context Acc (%)
LLaVA PGD 93.74 73.62(-21) 57.06(-39)

LLaVA APGD 93.74 72.61(-23) 37.65(-60)

LLaVA CW 93.74 91.76(-2) 90.2(-4)

BLIP2-T5 PGD 97.67 87.54(-10) 94.92(-3)

BLIP2-T5 APGD 97.67 87.29(-11) 98.43(+1)

BLIP2-T5 CW 97.67 94.97(-3) 92.76(-5)

InstructBLIP PGD 88.94 66.92(-25) 71.61(-19)

InstructBLIP APGD 88.94 68.74(-23) 89.22(-0)

InstructBLIP CW 88.94 84.92(-5) 82.51(-7)

Table 3. Top-1 image classification result on COCO 2014val.
The first table section shows visual encoder accuracy, referring
to CLIP/EVA-CLIP’s accuracy on classification; second section
shows LMMs’ accuracy; third section show LMMs’ accuracy, af-
ter the context is added to the query. Numbers in parenthesis show
% change w.r.t. the Pre-attack accuracy.

Such characteristics indicates the traditional task-specific
adversarial generation techniques are not universally effec-
tive against current LMM, and points to the need for fur-
ther research into new adversarial attack strategies, particu-
larly in the context of zero-shot inference. Finally, we find
adding context about the querying object improves LMMs’
visual robustness. We therefore propose a strategy to de-
compose questions into multiple existence questions asso-
ciated with the corresponding context, which achieved no-
table improvements in robustness on COCO and Imagenet
classification.
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