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Abstract

Melanoma is one of the deadliest forms of skin cancer
in the USA, with a survival rate of 23% for delayed diag-
nosis. However, early detection could extend the survival
rate up to 99%. Due to the importance of early analysis
of skin lesions, many efforts have been dedicated to im-
plementing end-to-end automated artificial intelligence sys-
tems to detect the presence of melanoma. In this study, we
introduce the MaSA-UNet, a U-Net-like architecture com-
plemented by the Manhattan Self-Attention mechanism for
biomedical image segmentation. Additionally, we propose
a set of weighted compound loss (WCL) functions and self-
supervision learning mechanisms to improve the segmenta-
tion baseline performance of the MaSA-UNet deep learning
model for skin lesion segmentation tasks, particularly fo-
cusing on melanoma segmentation. This research utilizes
several popular and publicly available skin lesion datasets:
the ISIC 2016, 2017, 2018, and PH2 datasets. The re-
sults showed that our proposed MaSA-UNet outperforms
the state-of-the-art deep learning architectures for skin le-
sions segmentation tasks in terms of the Dice coefficient and
Jaccard score.

1. Introduction

Melanoma is known as one of the most serious and deadliest
forms of skin cancer in the United States [14]. According
to Siegel et al., [25], the number of deaths associated with
this type of skin cancer is projected to be counted as 7,990,
only in the USA during 2023. Although melanoma repre-
sents only 1% of skin cancer cases detected in the United
States, with a survival rate of 23% for delayed diagnosis,
it is responsible for the majority of fatalities related to skin
cancer. It is worth mentioning, that early detection could
lead to a high survival rate. Following initial surgery, a sig-
nificant number of individuals with “thin melanoma” have a
5-year relative survival rate of 99% in the USA [17]. There-

Figure 1. The proposed MaSA-UNet architecture for skin lesion
segmentation. The Manhattan Self-Attention mechanism is used
to highlight the most important features for the reconstruction of
the segmentation mask

fore, accurate and efficient methods are required to guar-
antee a precise diagnosis of skin lesions, thus ensuring a
timely treatment [1].

The use of deep learning (DL) to automate several tasks,
ranging from software to industrial manufacturing, has been
a trend in the last decade. Powered by large datasets, DL al-
gorithms have proven to outperform human abilities in dif-
ferent tasks such as video games [19], board games [26],
and object detection [24]. Biomedical image analysis for
computer-assisted diagnosis is one of the benefited fields
by DL [11], specifically due to the advancements in com-
puter vision tasks such as image classification [12], object
recognition [13], and image segmentation [4]. Image seg-
mentation is well-known as a pixel-level classification task,
which is usually adopted to precisely locate regions of inter-
est, for instance, skin lesions. Performing skin lesion seg-
mentation is a challenging task, in particular for cases where
the lesions are not clearly contrasting with the skin color or
have an almost imperceptible pigment [9]. Because of this
and other scenarios related to biomedical imaging segmen-
tation (BIS), several state-of-the-art DL architectures have
been proposed [15], such as U-Net [23], V-Net [18], UPEN
[21, 22], TransU-Net [4], and Swin-Unet [3].

In this work, we introduce a novel approach for extract-
ing skin lesion regions using the Manhattan Self-Attention
UNet (MaSA-UNet) combined with the Weighted Com-
posed Loss (WCL) as an advanced DL architecture tai-
lored for skin lesion segmentation tasks. This architecture



is designed to enhance local context understanding through
a two-dimensional decay attention mechanism, aiming to
refine the accuracy of the predicted segmentation mask.
Figure 1 highlights the central concept of MaSA-UNet.
The goal of this study is to present MaSA-UNet not only
as a novel architectural innovation but also as a means
to produce precise segmentation masks for skin lesions.
This is achieved by minimizing the difference between the
predicted segmentation mask and the manually annotated
ground truth. We introduce the Weighted Composed Loss
(WCL) function with the anticipation that a combination
of weighted loss functions will enhance MaSA-UNet’s per-
formance in segmenting Melanoma and accurately identify
significant features within the skin lesions.

In summary, our contributions to this work are outlined
as follows:
• To our knowledge, this is the inaugural study to introduce

the Manhattan Self-Attention mechanism for medical im-
age segmentation tasks, marking a novel application in
the field.

• We propose MaSA-UNet, a novel end-to-end DL model
for skin lesion segmentation, incorporating the Weighted
Composed Loss that blends multiple weighted loss func-
tions to enhance segmentation accuracy. MaSA-UNet
achieves competing performance compared to existing
models and will be made available to the research com-
munity through a repository link.

The rest of this paper is organized as follows: Section 2 pro-
vides a detailed discussion of the proposed methodology. In
section 3, qualitative and quantitative results are analyzed.
Finally, section 4 concludes this work, and provides sugges-
tions for future directions.

2. Methodology

2.1. MaSA: The Manhattan Self-Attention

Introduced by Fan et al. [7] and inspired by the Reten-
tive Network [27], the Manhattan Self-Attention (MaSA)
mechanism proposes a novel approach within the scope of
enhancing the operational efficiency and performance of
attention-based models. This method diverges from conven-
tional attention mechanisms by adopting a unique configu-
ration that significantly diminishes computational demands
without compromising accuracy. It simplifies the process of
attention computation, focusing on a more efficient utiliza-
tion of computational resources. This advancement is par-
ticularly advantageous for handling extensive datasets or in-
tricate pattern recognition tasks, making it a valuable asset
for progressing research in areas such as natural language
processing and computer vision. MaSA is formulated as
follows

BiRetention(X) = (QK⊤ ⊙DBi)V (1)

where DBi
nm = γ|n−m| represents the interaction between

the n-th and m-th tokens.
For two-dimensional data, such as images, MaSA ex-

tends the decay matrix to incorporate Manhattan distances

D2d
nm = γ|xn−xm|+|yn−ym| (2)

The core MaSA equation, accounting for spatial decay,
is

MaSA(X) = (Softmax(QK⊤)⊙D2d)V (3)

where the attention scores are calculated separately for
horizontal and vertical directions

MaSA(X) = AttnH(AttnWV )⊤ (4)

with AttnH = Softmax(QHK⊤
H) ⊙ DH and AttnW =

Softmax(QWK⊤
W )⊙DW .

The Local Context Enhancement module is then intro-
duced for further enhancing the local expression capability
of MaSA, thus the final model is expressed as

Xout = MaSA(X) + LCE(V ) (5)

Here, LCE employs depthwise convolutions, underlin-
ing MaSA’s utility in leveraging spatial relationships for en-
hanced attention modeling in vision tasks.

2.2. The Weighted Composed Loss (WCL)

The Weighted Composed Loss (WCL) function is an
optimization approach introduced alongside the MaSA-
UNet architecture, aimed at improving the segmentation of
biomedical images. It leverages a combination of distinct
loss functions, each contributing unique benefits to the seg-
mentation task. The essence of WCL lies in its capability to
systematically merge these functions using specific weights
(λ), thereby tailoring the loss landscape to more effectively
pinpoint the global minima.

A generalized expression of WCL incorporating n loss
functions is given by:

WCLn =

n∑
i=1

λiLi (6)

where λi denotes the weight assigned to each loss function
Li, optimized to achieve superior performance.

The WCL integrates several key loss functions, includ-
ing:

Binary Cross Entropy Loss (BCE), fundamental for bi-
nary classification, defined as:

LBCE = −[y log(ŷ) + (1− y) log(1− ŷ)] (7)

Dice Coefficient Loss, crucial for image segmentation,
given by:

LDice = 1−
2 ·

∑N
i=1 yi · ŷi∑N

i=1 yi +
∑N

i=1 ŷi
(8)



Figure 2. Detailed illustration of the proposed MaSA-UNet model. The picture depicts the key components of the architecture, the pre-
trained MaSA denoised model, the MaSA segmentation model, and the WCL function.

Jaccard Loss (IoU Loss), measuring the overlap be-
tween predicted and ground truth masks:

LJaccard = 1−
∑N

i=1 yi · ŷi∑N
i=1 yi +

∑N
i=1 ŷi −

∑N
i=1 yi · ŷi

(9)

Focal Loss, addressing class imbalance by focusing
more on difficult, misclassified examples:

LFocal = −αt(1− pt)
γ log(pt) (10)

2.3. The MaSA-UNet: Manhattan Self-Attention
UNet with Weighted Composed Loss

The MaSA-UNet architecture innovatively integrates the
Manhattan Self-Attention (MaSA) mechanism, a self-
supervised encoder pre-training strategy, and WCL to en-
hance the accuracy of skin lesion segmentation. This archi-
tecture capitalizes on the MaSA mechanism’s ability to effi-
ciently highlight relevant features within the image through
spatial attention, significantly improving the model’s focus
on pertinent areas for accurate segmentation.

The self-supervised encoder pre-training further refines
the model’s ability to discern intricate patterns within
biomedical images, allowing for a more nuanced under-
standing and representation of the data. This pre-training
phase utilizes a denoising task to learn a robust feature rep-
resentation that is highly beneficial for the segmentation
task.

The WCL function is meticulously designed to combine
multiple loss functions with distinct weights (λ), optimizing
the model’s performance by addressing the specific chal-
lenges posed by skin lesion segmentation. The weighted

approach allows for a tailored optimization strategy that em-
phasizes the most relevant aspects of the segmentation task,
ensuring high fidelity in the generated masks relative to the
ground truth.

Mathematically, the MaSA-UNet can be represented as
follows

MaSA− UNet(X) = FMaSA(Epre-trained(X)) (11)

where X is the input image, FMaSA denotes the function rep-
resenting the application of the Manhattan Self-Attention
mechanism in the framework of UNet architecture[23], and
Epre-trained indicates the pre-trained encoder function.

The WCL for the model is defined as

LWCL =
n∑

i=1

λiLi(MaSA− UNet(X), Y ) (12)

where Y is the ground truth mask, Li represents the indi-
vidual loss functions (e.g., BCE, Dice, Jaccard, Focal), and
λi are the corresponding weights determined through opti-
mization to yield the best performance.

Through meticulous design and integration, the MaSA-
UNet achieves competitive performance for skin lesion seg-
mentation. Figure 2 shows details of the design of the pro-
posed MaSA-UNet architecture.

3. Experimental Setup and Results
3.1. Datasets

In this study, the proposed method is trained and tested over
four publicly available skin lesion datasets, including PH2 1

1https://www.fc.up.pt/addi/ph2%20database.html



Table 1. Experimental results over the test split of the different
benchmark datasets. ‘-’: No results reported. key: [Best, Second
Best]

Method ISIC 2016 ISIC 2017 ISIC 2018 PH2
JS DC JS DC JS DC JS DC

UNet [23] 0.812 0.887 0.658 0.794 0.685 0.813 0.794 0.873
UNet++ [30] 0.818 0.889 0.686 0.814 0.714 0.833 0.813 0.890
Attention Unet [20] 0.811 0.886 0.688 0.815 0.730 0.844 0.802 0.880
CA-Net [8] 0.807 0.881 - - - - 0.752 0.847
SegFormer [29] - - 0.825 0.904 0.842 0.914 - -
Swin Unet [2] - - 0.741 0.851 0.768 0.869 - -
TransUNet[4] 0.849 0.913 0.775 0.873 0.825 0.904 0.840 0.910
MaSA-UNet (ours) 0.860 0.925 0.830 0.907 0.836 0.911 0.879 0.936

[16], ISIC 2016 [10], ISIC 2017 [6], and ISIC 2018 [5, 28]2

datasets.

Figure 3. Qualitative results over the (a) ISIC 2016, (b) ISIC 2017,
(c) ISIC 2018, and PH2 datasets, comparing the MaSA-UNet with
state-of-the-art image segmentation models. Green boxes indicate
the region of interest in the GT. Red boxes indicate the comparison
with the GT on each output.

3.2. Implementation details

The ISIC 2016 dataset includes 900 and 379 samples for
training and testing respectively, each sample with the cor-
responding manually annotated segmentation mask. For
the experiments we used 810 samples for training the DL
architecture, 90 samples for validation and hyperparame-
ter selection, including the λ values for the LWCL, and
the remaining 379 samples for final testing evaluation. In
the case of ISIC 2017 and 2018, each dataset contains a
total of 2,750 and 3,964 samples respectively. The PH2

dataset contains a total of 200 samples, randomly split in
the proportion of 7:1:2 for training, validation, and testing
respectively. To alleviate the computational resources con-
straint, the size of the input images and the corresponding
segmentation mask were resized to a uniform resolution of
224 × 224 on all datasets. The proposed MaSA-UNet ar-
chitecture preserves the same layout as the vanilla UNet
architecture (Initial filter size of 32 and duplicating every
downsample layer in the encoder, opposite behavior in the
decoder size), with the incorporation of the key components
as the MaSA block and the pre-trained denoise model. A
modified version of the vanilla U-Net architecture was used
to perform the grid search for the proposed LWCL function.

2https://challenge.isic-archive.com/data/

Experiments without using LWCL, used the LJaccard as de-
fault loss. The pre-trained MaSA-based denoising model
runs for 250 epochs, while during the grid search, for the λ
values, each experiment runs for a total of 50 epochs. On the
other hand, the final training process of the MaSA-UNet is
trained for a total of 150 epochs, monitoring the best perfor-
mance over the validation set. The batch size while training
is set to 16 for all the benchmark datasets. We use the Adam
optimizer for all the experiments with an initial learning rate
of 1×10−3 and a scheduled reducer factor of 0.01 on every
epoch after the first 20 epochs.

3.3. Experimental Results

Quantitative results summarized in table 1 show that the
MaSA-UNet DL segmentation model significantly im-
proves skin lesion segmentation performance over com-
peting models in terms of Dice coefficient (DC) and Jac-
card score (JS). Our comprehensive study compares MaSA-
UNet to baseline models (UNet, UNet++), attention-based
models (Attention UNet, CA-Net), and transformer-based
models (SegFormer, Swin UNet, TransUNet), highlight-
ing MaSA-UNet’s superior capabilities. MaSA-UNet out-
performs state-of-the-art DL models in three benchmark
datasets (ISIC 2016, ISIC 2017, and PH2) and competes
closely with SegFormer on the ISIC 2018 dataset, surpass-
ing other models in performance. Qualitatively, a few sam-
ples from the different datasets are shown in Figure 3, con-
trasting the performance of the proposed MaSA UNet with
the competing segmentation models.

4. Conclusion

In this work, we introduced a novel DL architecture, MaSA-
UNet, aimed at enhancing the accuracy of skin lesion
segmentation. The MaSA-UNet incorporates a Manhat-
tan Self-Attention UNet model combined with a Weighted
Composed Loss (WCL). This configuration integrates the
strengths of the bidirectional Manhattan Self-Attention
mechanism with different loss functions, assigned vary-
ing weights, to improve segmentation performance as re-
flected in the Jaccard score and Dice coefficient metrics.
Our experimental results demonstrate that MaSA-UNet can
accurately delineate skin lesion regions, reducing the dis-
crepancy between the predicted segmentation mask and the
ground truth, and enhancing overall segmentation accuracy.

In future research, we plan to enhance the efficiency
of the weight-search process to decrease both time con-
sumption and computational expense. We also aim to fur-
ther investigate the applicability of the Manhattan Self-
Attention mechanism across various computer vision tasks.
Furthermore, efforts will be dedicated to advancing the in-
terpretability of the segmentation outcomes facilitated by
MaSA-UNet.
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