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Abstract

Image generation from natural language descriptions is
an exciting and challenging task in computer vision and
natural language processing. In this work, we propose
a novel method to generate synthetic images from scene
graphs in the context of wildlife scenarios. Given a scene
graph, our method uses a graph convolutional network to
predict semantic layouts, and a semi-parametric approach
based on a cascade refinement network to synthesize the
final image. We test our approach on a subset of COCO
dataset, which we call COCO-Wildlife. Our results out-
perform the baselines, both quantitatively and qualitatively,
and the visual results show the ability of our approach to
generate stunning images with natural interaction between
the different objects. Our findings show the potential to ex-
pand the use case of the proposed method to other contexts
where scale and realism is fundamental.

1. Introduction
The automatic generation of photorealistic images from

text (T2I) is a significant and frontier problem in natural lan-
guage processing and computer vision [2]. It has received
substantial attention due to its enormous potential applica-
bility, as T2I methods can be useful for image editing, cre-
ating artistic images, computer-aided design, video games,
and virtual reality [1, 2, 14, 21, 27]. Much progress in this
area has been lead by the advances of generative adversar-
ial networks (GANs) [3]. GANs have shown great success
in generating realistic images that follow a known training
distribution. They are composed of two models trained ad-
versarially: the generator and discriminator. The generator
tries to fool the discriminator by generating realistic syn-
thetic images, while the discriminator tries to classify each
image as real or synthetic.

For T2I, GANs architectures are conditioned on text to
generate realistic synthetic images that match the text de-
scription. For instance, Reed et al. [22] proposed the first
GAN model conditioned on text. They use a pre-trained text

Figure 1. Current approaches for synthetic image generation, such
as SIMS [19], require highly detailed semantic layouts to generate
realistic images, which limits its use on T2I. We overcome this
limitation by taking into consideration artifact removal and scaling
to preserve realism in the composition.

encoder that extracts features from text, and feeds the gen-
erator and discriminator with these features. This method
can only generate low-resolution images (64×64). In order
to address this issue, Zhang et al. [33] proposed StackGAN,
where multiple generators are in charge of progressively re-
fine the image. Most of the parameters of the generators
are shared and used to produce higher resolution images
(256× 256). This approach significantly changes synthetic
images even if only some words related to attributes change.

GAN models based on attention emerged to better con-
trol the image generation by producing regions associated
with the most relevant words [14, 30], enabling the sys-
tem to generate similar images when minor changes in the
sentences occur. Another challenge is the semantic consis-
tency between the generated image and the text description.
Some advances in this problem use a cycle consistency ap-
proach to align the image with the input text by using the
text description of the generated image [20]. Some other
approaches have focused on improving the quality of the
images. Yin et al. [32] proposed a Siamese architecture to



generate images for a given text. Each branch of the archi-
tecture contains an array of generators and discriminators,
and the input text for each branch is different but has the
same meaning. Tao et al. [24] proposed a dynamic mem-
ory network that synthesizes higher resolution images with
a single generator and discriminator. They gain visual de-
tails by using residual blocks. Other recent works have used
a zero-shot approach with autoregressive transformers for
T2I [1, 21].

Although the methods conditioned on text have shown
impressive progress, they are still far from generating com-
plex images where many objects and relationships exist.
Some other works have proposed to use more explicit rep-
resentations to deal with complex descriptions [10]. These
methods use additional annotations during training, e.g.,
captions [9], mouse traces [12], semantic layouts [19], and
scene graphs [7]. Among these methods, the scene graphs
are powerful structures to represent objects, attributes, and
interactions between objects [8]. The use of scene graphs
for automatic photo-realistic image generation is a rela-
tively new research area, but its promising results show that
it is a step forward to close the gap between text descriptions
and image generation [6, 15, 17, 25, 26].

Typically, scene graphs are used to generate intermedi-
ate semantic layouts that are used as a reference to gen-
erate the final synthetic image. These methods for im-
age generation can be classified into non-parametric, semi-
parametric, and parametric approaches. Parametric mod-
els have the advantage of end-to-end training but lose the
ability of non-parametric and semi-parametric models that
draw from source images to obtain detailed object appear-
ance [19]. The biggest issue with the parametric and semi-
parametric models, as indicated in Figure 1, is that they
operate over detailed semantic layouts like GauGAN [18],
SIMS [19], and pix2pixHD [28].

In this work, we present a novel method to generate
wildlife images from scene graphs using a semi-parametric
approach that mixes the strength of generative models
to learn from examples, and the performance of non-
parametric models in creating images with high-quality ob-
jects. Our proposal consists of two steps. First, our pro-
posal uses an architecture based on the graph convolution
network [7] to generate high-quality semantic layout from
scene graphs. Then, it uses an adaptation of SIMS [19] to
generate synthetic images.

The proposed approach does not require detailed seman-
tic layout as most of the parametric approaches. Besides, it
can generate realistic images with a low number of image
artifacts compared to the semi-parametric methods. We per-
form experiments in a subset of COCO with images related
to wildlife. We select the wildlife subset since the inter-
action of animals in natural scenarios mixes the simplicity
of having a limited number of objects and the complexity of

generating realistic images under a high number of variables
such as scale, depth loss, illumination, textures, variability
in scenarios, among others.

The rest of this paper is structured as follows. Sec-
tion 2 describes the method to generate wildlife synthetic
images from scene graphs. Section 3 presents the exper-
imental setup, datasets, and implementation details. Sec-
tion 4 shows the main findings and results of the research.
Finally, Section 5 shares our conclusions and perspectives
of future work.

2. Method

The proposed method can be seen in Figure 2 and is com-
posed of two blocks: the semantic layout generator which
creates semantic layouts from scene graphs; and the syn-
thesis block generates realist synthetic images from the lay-
outs. In the following subsections, we describe these blocks
in detail.

2.1. Semantic layout generator from scene graphs

The input for our proposed method is a scene graph,
which is a data structure that encodes objects and their in-
teractions in a scene [8]. A scene graph can be defined as a
tuple (O,E), where O = {o1, ..., on} is a set of objects be-
longing to set of categories C, and E ⊆ O×R×O is a set
of directed edges of the form (oi, r, oj) where oi, oj ∈ O
and r is part of relationship categories R [7]. In Figure 2
we show a scene graph as input of our system.

The system uses a shorter version of sg2im [7], which
we called m-sg, to predict a semantic layout from a scene
graph. The semantic layout is an image S ∈ {0, 1}h×w×c,
where w × h is its size, and c is the number of classes.

Our model removes the cascaded refinement network
(CRN) and we only kept the box loss Lbox (mean square
error from predicted and ground-truth boxes) and mask loss
Lmask (pixel-wise binary cross-entropy between ground-
truth and predicted layouts).

2.2. Semantic layout enhancement

Since m-sg is based on sg2im, it provides good informa-
tion about the position of the objects but it generalizes their
shapes with blobs that are the average of the object exam-
ples.

Therefore, we propose a method to enhance the layout by
replacing the blobs with realistic shapes of objects, and fill-
ing the empty background areas (black pixels in the map).
This process uses a bank of shapes that stores animals in
five different poses: left, right, back, front, and laying down.
Then, the real shapes are selected at random from the bank
to replace the original blobs in the semantic layout. Any
empty region of the original layout is filled with the clos-
est background class. For the construction of the bank of



Figure 2. Proposed pipeline for wildlife image generation from scene graphs. The semantic layout generator takes a scene graph and
creates a detailed mask, then the synthesis block makes a composition based on the mask of the proper background, scales the objects, fills
any gaps using image painting, and removes artifacts and provide color balance with a cascade refinement network.

shapes, we used the Panoptic-FPN network [11] in a set of
images of animals from internet.

2.3. Image synthesis

After the semantic layout is generated, the layout is used
as input for the synthesis block to generate realistic images.
Our approach is semi-parametric similar to SIMS [19] and
PasteGAN [15], but we address object scaling, occlusion,
and image composition.

2.3.1 Image bank and metadata

The first step in the synthesis block is to construct an im-
age bank from a dataset. This bank M is composed of in-
dividual segments extracted from the dataset, where each
segment Pi is associated with its binary mask Pmask

i ∈
{0, 1}h×w×c and color image P color

i ∈ Rh×w×3.

2.3.2 Object retrieval and scaling

During testing, given a semantic layout S, the goal is to
find the best matching segment in the image bank M for
each element in S. Let Sj ∈ S be a semantic segment of
S, and Smask

j ∈ {0, 1}h×w×c be its corresponding binary
mask. The objective is to find the segment in M with the
maximum intersection-over-union (IoU) score,

σ(Sj) = argmax
i

IoU(Pmask
i , Smask

j ) (1)

where i iterates over all the segments in M of the same class
as Sj .

In contrast with [19], we do not discard segments in dif-
ferent positions and scales. Instead, we translate the candi-
date segment Pi to the position of Sj and resize Pi to the
scale of Sj respecting the proportion of Pi. Then, we apply
the IoU score.

We estimate the scaling information by using the ani-
mals in the training images as reference. We used the Faster
RCNN X101 network [29] to extract the bounding boxes of
all these reference animals.

The reference animals per image and the information
about their average sizes in the real world are used to con-
struct a linear model that predicts the scaling rate given the
height position of the animal. We define the scaling rate
as the ratio between the height of the animal in pixels and
its average height in meters. Figure 3 shows an example of
the scaling rate model in a training image by comparing the
height of the horses based on their position in the image.

The system searches for all the terrains in the image bank
where the scaling rate prediction model balances the size of
the animals, the overlap between animals, and the IoU score
concerning the semantic segment of the terrain Smask

j by
calculating σterrain(Sj),

σterrain(Sj) = argmax
i

w1IoU(Pmask
i , Smask

j )

+ w2hmin + w3(1− overlap)
(2)

where i iterates over all the terrains of the same class than
Sj , hmin ∈ [0, 1] is the new normalized height of the
smaller animal in the terrain, overlap ∈ [0, 1] is the esti-
mated normalized overlapping between the bounding boxes
of the rescaled animals, and wk, k = {1, 2, 3} are the



Figure 3. Scaling approach: using the bounding boxes of the an-
imals (a), we create a linear regression model (b) with the height
position of the animal in the image and the scaling rate (pixels of
the bounding box divided by average height of real animals).

weights for each component. Terrains that generate hard
to visualize animals (too big or small) are discarded before
using Equation 2.

2.3.3 Image inpainting

The segments of the background classes (terrains and sky)
typically have missing regions. These missing regions are
undesired for the image synthesis, because they can gener-
ate image artifacts. Hi-Fill [31] is a recent light-weight in-
painting model with excellent results for irregular holes of
considerable sizes, which are the types of holes that appear
regularly in our image segments. Hi-Fill uses a convolu-
tional network to predict a low-resolution inpainted image,
and it up-samples this image to generate a large blurry ver-
sion of the image, then it uses a contextual residual aggre-
gation mechanism to produce an inpainted image with high
resolution.

In this work, we use Hi-Fill trained with Places [34]
dataset to fill all the missing regions in the selected back-
ground. Also, Hi-Fill is used to stretch the sky and the ter-
rain to reduce the missing regions in the frontiers between
them.

2.3.4 Canvas composition

Once we retrieved the animals (with proper scale) and ap-
plied the image inpainting to the background, we merge
these elements into a canvas. The canvas uses the semantic
layout as reference to blend all the objects into the image.
To naturally blend the object boundaries, we implemented
inside and outside boundary elision as suggested by [19].

2.3.5 Synthesis network

Typically, the recovered segments in the canvas have differ-
ent illuminations, color temperature, and artifacts between
the borders. Therefore, we use a CRN proposed on [19]
to balance the color of the recovered object and to smooth
the transitions between them as a final step. The SIMS-
Synthesis network receives a semantic layout and its canvas
and generates the final synthetic image. We adapted the ar-
chitecture of the original network to fit the new image size
(640×480), with most of the upsampling and convolutional
filters adjusted to the new resolution, and trained with the
same perceptual loss based on feature activations as in [19].

We decided to use this network as a refiner instead of
the original implementation because the network is prone
to generate artifacts in missing regions. This behavior in
CRNs is originated due to the loss of semantic information
by normalization layers as studied in [18]. .

In Figure 2, we can observe that after segment retrieval
both animals have black borders and the sheep has a colder
color that does not match the background. This is fixed after
the final synthesis step.

3. Experimental setup

In the following sections, we describe the datasets, the
baseline methods, the metrics, and the details of the experi-
ments.

3.1. COCO-Wildlife subset

We selected from the Common Objects in COntext
(COCO) dataset [16] a subset that we called COCO-
Wildlife. In this subset, we selected images that contain
at least one object of the context categories (bush, dirt,
grass, hill, leaves, mountain, mud, river, rock, sand, sea,
stone, tree, sky-other, plant-other, branch, clouds, fog, and
ground-other) or the animal categories (bird, horse, sheep,
cow, elephant, bear, zebra, and giraffe). Our animal classes
from COCO do not include pets to prevent the presence of
urban scenarios. In total, we selected 20K images to train
m-sg and 850 for the validation set. We selected this spe-
cific set of classes, since it has semantically similar classes
with high variability between their objects, which prevents
having images with very similar composition.



From the COCO-Wildlife subset, we created a class-
balanced subset where the corresponding semantic layouts
of the images had more than 50% of the pixels different
from black. We used this subset (around 4K images) to
train the SIMS-Synthesis network. In the synthesis phase,
we curated the subset of COCO-Wildlife to remove images
with sky or land sections with big segments missing. This
curated subset contains around 3K images.

3.2. Open Images V6 subset

Open Images V6 [13] contains around 1.9M images with
16M bounding boxes and 600 object classes. It provides
high-quality segmentation masks for the objects. We se-
lected a subset of Open Images V6 with the animal cate-
gories, and manually curated the subset to obtain the exam-
ples with the best-looking masks. These animals replaced
the animal segments from COCO-Wildlife in the synthesis
phase.

3.3. Baseline methods

Sg2im [7] is widely used as benchmark in the task of
image generation from scene graphs [6, 26]. We adopted
sg2im for the comparison because it is the closer method
to our proposed pipeline. We also used SIMS [19] for the
comparison because our method is inspired by some of its
elements. As SIMS does not have a layout generator, we
used m-sg with the mask enhancement block to perform a
fair comparison.

3.4. Evaluation metrics

To measure the performance of the proposed method, we
use five metrics. The first metric is the relation score pro-
posed in [25], which measures the agreement between the
relations specified by the scene graph and the relations pre-
sented in the generated layouts. The second metric is the
widely adopted Inception score (IS) [23] that uses the pre-
trained Inception V3 network to predict the class probabil-
ity and computes the score that penalizes bad quality im-
ages with lower diversity. The third metric, called Fréchet
Inception Distance (FID) extracts the visual features of the
last pooling layer in Inception V3 and computes the dis-
tance between sets of real and synthetic images. The au-
thors [4] claimed that this metric correlates better to human
judgments compared to IS. As IS and FID do not consider
the specified objects in the synthetic images, we used the
Semantic Object Accuracy (SOA) metric [5] to alleviate this
issue. This metric uses a pre-trained object detector to iden-
tify if the images contain the desired objects (animals). We
used the Faster RCNN X101 network trained on COCO as
the object detector, and applied the two variants of SOA, i.e.
the recall as a class average (SOA-C) and the image average
(SOA-I).

3.5. Experiments

The proposed method aims to generate synthetic images
of high-visual quality and realism. Therefore, we designed
a qualitative experiment to compare the generated synthetic
images against a set of real images. In a second experiment,
we investigated the composition and realism of the images.
To achieve this, we randomly generated scene graphs to cre-
ate synthetic images and evaluate them with IS, FID, rela-
tion score, and SOA.

3.5.1 Synthetic scene graphs from images

As described by Johnson et al. [7], we began by extract-
ing scene graphs from a set of real images. The generator
extracts six possible excluding geometric relationships be-
tween two objects: right of, left of, above, below, inside,
and surrounding. It discards objects in the images with less
than 2% of the image size, and selects images with 2 to 8
objects. Besides, it discards images without terrain. For the
experiments, we used 141 images with the above character-
istics from the COCO-Wildlife validation set.

Once we generated the scene graphs for the subset, we
executed the systems to create the synthetic images from
those scene graphs.

3.5.2 Randomly generated scene graphs

Given a set of animals A = {horse, sheep, cow, elephant,
bear, zebra, giraffe} and terrains T = {dirt, grass, mud,
sand, ground-other}, we select one terrain at random and
a maximum number of five animals per scene graph. We
decide if the scene graph contains sky with a given proba-
bility. For the relationships, we always specify that the sky
is above the rest of the elements. Regarding animal-animal
relationships, we use an animal as reference and then we
randomly select one relation pair between the following:
right of -above, right of -below, left of -above, and left of -
below. Then, in the same scene graph, only the two options
of the selected pair are used to avoid contradictions. We also
randomly select the relationship between the terrain and the
animal. The animal can be above or inside the terrain, or the
terrain can surround the animals. We randomly generated
2250 scene graphs for the experiment.

3.6. Implementation details

We performed all the experiments in a workstation with
an i7-6850K, 32GB of RAM, and a Titan Xp with 12GB
of VRAM. For sg2im, we used the original Torch imple-
mentation proposed by the authors [7]. Since m-sg is based
on sg2im, it inherits most of its configurations but we set
the mask loss weight to 0.1. From the 27 classes of the
COCO-Wildlife subset, we reduced them to 19 by merging
the classes that were semantically similar. As an example



we merged bush, grass and plant-other into the vegetation
class. We did the same for tree, sky, rock, ground, and water
related classes. The training batch for all the experiments is
32, and the size of the layouts is 64 × 64. We trained both
models for 410 epochs on the COCO-Wildlife.

For the SIMS-Synthesis, we changed the size of the con-
volutional layers in the encoder and decoder to match the
input size of 640 × 480, as well as the number of classes
to fit those of m-sg. For training , we used the same train-
ing parameters as the authors for 100 epochs. The rest of the
blocks of the pipeline were implemented directly in Python.

4. Results
As previously indicated, we extracted the relationships

between objects in the validation set of COCO-Wildlife and
used them as input for the baseline methods and our pro-
posed method. Figure 4 shows some synthetic images
generated for the validation set by using sg2im (trained on
COCO), sg2im-wildlife (trained on COCO-Wildlife), m-sg
+ SIMS (SIMS with the m-sg as a semantic layout genera-
tor), and the proposed method. To better contrast the visual
results, we also show the reference images and their corre-
sponding scene graphs. We sorted the scene graphs from
simple to complex (top to bottom in the figure).

We can observe that the proposed method not only pre-
serves the relationships specified by the scene graph but
also generates detailed images. Even if we designed the
proposed system for simple scenes (images with one ter-
rain, sky, and animals), in some cases the method composes
complex scenes with context objects such as mountains and
trees (see rows 2, 3, and 4 in Figure 4). The baseline
methods generated some interesting synthetic images with
blurred regions. Although there are blurred image regions,
the synthetic images appear to preserve the composition of
the ground truth.

Now, we explore the performance of the baseline meth-
ods against the proposed method in a set of 2250 randomly
generated scene graphs. We compared the performance in
terms of the IS, FID, relation score, and SOA. Given that
IS and FID resize the images to 299 × 299, we computed
the metrics using input images of low-resolution (64 × 64)
and images of higher resolution (640 × 480) to prevent
any issues since sg2im and our proposal have different out-
put sizes. We compared the performance of sg2im in two
versions, i.e., the version trained with COCO and COCO-
Wildlife. For IS and FID, we used real images from the
training and validation sets of COCO-Wildlife with at least
one animal to compute the reference value.

Table 1 summarizes the results for each approach in
the aforementioned metrics. We marked in bold the best
method for each metric. We can observe that IS for real im-
ages of 64 × 64 is 7.29 and 8.67 for images of 640 × 480.
Our proposed method is around 2 points below compared to

the reference value. However, it outperforms sg2im by 1.5
points, and it is just 0.1 points below m-sg+SIMS in images
of 64 × 64, and it outperforms sg2im by 2.4 points in im-
ages of higher resolution. The m-sg+SIMS on 640 × 480
images has a higher IS than our proposed approach by 1.2
points, and it is 1 point below compared to the reference set.
We can also observe that the performance of sg2im is dete-
riorated with the model trained on COCO-Wildlife, which
is explained by the reduction of the training instances com-
pared to the COCO-trained model.

According to the FID, the proposed method outperforms
the baseline methods. The proposed method scores 1.9
times less than sg2im trained on COCO-Wildlife in images
of 64×64 and 3.9 times less in images of 640×480. Com-
pared against m-sg+SIMS, the proposal is slightly better
for both resolutions. Sg2im trained with COCO-Wildlife
gives better performance than sg2im trained on COCO in
this metric.

It is worth mentioning that both FID and IS fail to mea-
sure the realism of images. FID can measure the quality of
synthetic images against artifacts or noise due to the gen-
eration process, and it may be able to measure some level
of relationships between the objects, but it is blind to the
composition based on scale and perspective. This factor is
highly important for human evaluators when judging the re-
alism of an image.

Regarding the relation score, the proposed method
achieved better results than the baseline methods. Although
our model is based on sg2im for the layout prediction, the
improvement in the semantic layout and the scaling ap-
proach benefit the performance as shown in Table 1. For
example, the proposed method improves 3.26% the relation
score of sg2im, and 2.72% the trained model on COCO-
Wildlife. No relation score was calculated from SIMS given
that the input of this method does not generate a semantic
layout, and it is fed directly by m-sg.

Finally, we compare the baseline method against our pro-
posed method with the SOA. As sg2im generates images of
low resolution, the pre-trained network used to detect the
objects is unable to identify any object, so we discarded this
metric for this model. For the semi-parametric approaches,
we can observe that our proposal improved around 27% the
two variants of the metric concerning m-sg + SIMS.

Figure 5 shows some good examples of generated syn-
thetic images by using our proposed method. We present the
scene graphs from simple to complex for each row, show-
ing that the more complex scene graph contains at most five
animals. When only one animal exists in the image, the
proposed method tries to find a terrain that maximizes the
size of the animal, generating synthetic images where the
animal grabs attention, see rows 1 and 2. It is also clear
that the proposed method can scale the animals correctly
when multiple animals interact in the image, see rows 3 and



Figure 4. Visual comparison between sg2im (trained with COCO and COCO-Wildlife), m-sg+SIMS, and the proposed method.

Method IS ↑ FID ↓ RS ↑ SOA-C ↑ SOA-I ↑
64× 64 640× 480 64× 64 640× 480

Real images (7.2970, 0.4084) (8.6722, 0.8862) - - - - - - - - - - - - - - - - - - - -
sg2im (4.0431, 0.1709) (4.0390, 0.1874) 165.0762 298.1081 0.7499 - - - - - - - -

sg2im-wildlife (2.8169, 0.1403) (2.8061, 0.1446) 157.0717 277.1845 0.7553 - - - - - - - -
m-sg + SIMS (5.7984, 0.1938) (7.6099, 0.4182) 95.1993 76.5319 - - - - 0.6120 0.6137

Ours 5.6355, 0.2435) (6.4558, 0.2617) 81.7314 75.2954 0.7825 0.7785 0.7779

Table 1. Quantitative comparison between the baseline methods and the proposed method by using Inception score (mean, std), Fréchet
Inception Distance (FID), relation score (RS), and semantic object accuracy (SOA) at two different image resolutions.

4. Furthermore, we can note that our proposal has the ex-
citing characteristic of generating images rarely found in
search engines, e.g., interactions between sheep and ele-
phant, sheep and zebra, cow and zebra, cow and giraffe,
among other combinations. Additionally, we can observe
in Figure 5 the SIMS-Synthesis network effect: all the ex-
amples have an accurate color balance between objects and
background with no visible artifacts.

Although the system can generate good-quality images
under more complex situations, the method still presents
issues in interactions between animals and context objects
(hills, rocks, mountains, and trees) due to the quality of the
predicted layouts. Besides, the quality of the image bank
plays and essential role in our approach. Some issues are
directly related to the limited number of well-segmented
objects in the image bank. Other problems are related to
scaling, since occlusions and different poses of the refer-

ence animals affect the scaling approach. Figure 6 presents
some failure cases of the proposed pipeline.

5. Conclusions

Image generation from scene graphs is a complex topic
that merges computer vision and natural language process-
ing solutions. Some advances in generative adversarial net-
works have assisted in generating better solutions to the
task. In this work, we proposed a novel methodology for
image generation from scene graphs in the wildlife con-
text based on a semi-parametric approach. Our model uses
a graph convolutional network to predict semantic layouts
and a cascade refinement network to synthesize the final im-
age.

In this work, we proposed three solutions to improve the
quality of the synthetic images: (1) a step to improve the



Figure 5. Sample results, scene graphs and their corresponding synthetic image (from top to bottom).

Figure 6. Failure cases: (a) poor quality of the predicted layouts,
(b) low quality in the retrieved segments, and (c) scaling affected
by occlusions or different poses in the selected terrain.

semantic layout, (2) a scaling approach to resize the ani-
mals according to their actual sizes in the real world, and
(3) the use of an inpainting network to reduce the missing
regions in the image bank segments. We tested our pro-

posed method in the wildlife context with some promising
results in simple scenarios with one terrain, sky, and inter-
actions between animals. Additionally, we compared our
approach against sg2im and SIMS, achieving outstanding
results that outperformed the baseline methods regarding
Inception score, Fréchet Inception distance, relation score,
and semantic object accuracy.

Although we performed experiments in a selected sub-
set of classes in the wildlife context, the results indicated
potential in the sense that we can translate our proposal to
other contexts.

For future work, we plan to explore generative adver-
sarial networks to create synthetic landscapes with higher
control over the details in the image. Another interesting
avenue is to improve the quality of the image bank and in-
clude more metadata to match rich text descriptions with
the synthesized images.
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