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Abstract

Emotion recognition is the task of classifying perceived
emotions in people. Previous works have utilized various
nonverbal cues to extract features from images and corre-
late them to emotions. Of these cues, situational context is
particularly crucial in emotion perception since it can di-
rectly influence the emotion of a person. In this paper, we
propose an approach for high-level context representation
extraction from images. The model relies on a single cue
and a single encoding stream to correlate this represen-
tation with emotions. Our model competes with the state-
of-the-art, achieving an mAP of 0.3002 on the EMOTIC
dataset while also being capable of execution on consumer-
grade hardware at ≈ 90 frames per second. Overall, our
approach is more efficient than previous models and can be
easily deployed to address real-world problems related to
emotion recognition.

1. Introduction

Among diverse possible representations of human be-
havior, emotion recognition is a research topic that gained
interest in the last few years, mainly due to the high devel-
opment of application scenarios that can explore affective
computing concepts, such as smart environments and social
robotics. By understanding not only the user but also the
person, systems can act on top of behavioral knowledge and
propose diverse interventions to improve interaction, expe-
rience, or even quality of life.

To recognize emotions, systems must first decode emo-
tional signals sent naturally by humans, sometimes even

without intention [4]. These signals are usually referred to
as implicit and are derived from a form of communication
defined as nonverbal communication. Research shows that
a significant amount of affective information is not commu-
nicated verbally but is sent and received naturally through
this communication channel, which encompasses facial ex-
pressions, body language, speech tonality, and other emo-
tional cues [22, 24]. This ability allows for an unobtrusive
experience and a perception of emotion that is not posed.

However, in unrestricted in-the-wild scenarios, our emo-
tions are also influenced by information in the situational
context. For example, a person sitting on a beach, enjoying
the sun and the sea during their vacation, is more likely to
experience positive sentiments such as joy and happiness.
In contrast, a person stuck in a traffic jam filled with noise
pollution could be inclined towards more negative senti-
ments such as frustration, anger, or stress. Therefore, en-
vironmental stimuli should also be taken into consideration
when analyzing emotion.

Researchers have been proposing approaches that take
into consideration contextual information for a while now
in works such as EMOTIC [11], CAER-Net [14], Emoti-
Con [20] GLAMOR-Net [13], and EmotionRAM [7], each
proposing new approaches on how to leverage context and
extract its representations from images on different datasets.
We hypothesize that, although working on these low-level
representational features could and has led to significant re-
sults in the past, generating semantic, high-level descrip-
tions could be more assertive to unseen data, leading to bet-
ter results in test sets and when deployed to solve real-world
problems.

In some scenarios, high-level representations of emo-
tions can be a valuable aid for decision-makers to make in-



formed choices. For example, consider a city planner that
needs to decide which public parks in the city need to be im-
proved or renovated first. To make this decision, the plan-
ner needs to know how people feel when they are in these
spaces, but they may not need to know each individual expe-
rience to make this decision. Instead, the high-level repre-
sentation could be provided as an overview of the emotions
associated with that context and how people act towards it.
It could be easily compared without needing to act on top of
a significant amount of data. Approaches such as this one
have several advantages, such as resource-saving.

In this work, we propose an approach for the extraction
of high-level context representations of images for the task
of emotion recognition. We show in our experiments that
these highly-representative descriptions of context are capa-
ble of yielding results comparable to the state-of-the-art of
emotion recognition on the EMOTIC dataset [12] by itself
and could easily be placed into a complete emotion recog-
nition pipeline as a context encoding module to lead to sig-
nificant improvements in accuracy. We also show that our
proposal can perform a fast inference, a desirable feature
for low-consumption edge devices that could be deployed
in the wild. The contributions of this work are as follows:

• We propose a novel framework that (i) builds a high-
level representation of extracted context descriptors
from images and (ii) employs Graph Convolutional
Networks (GCNs) to classify these representations into
emotional categories.

• We benchmark on the well-known EMOTIC dataset
[12], achieving a comparable accuracy with the state-
of-the-art.

• We discuss how our model’s low computational power
requirements make diverse applications possible to
solve real-world problems.

The rest of the paper is organized as follows: Section
2 provides an overview of works for emotion recognition
from images. Our proposed framework for high-level con-
text description is described in Section 3. Later, in Sections
4 and 5, we depict our experimental setup and discuss the
obtained results, respectively. Finally, we draw conclusions
in Section 6

2. Literature review
It is well-known that facial expressions contain very de-

scriptive features related to emotion. According to Barret,
faces are to us as words are on a page, and humans can
decode them perceptually with some level of ease [2]. Nat-
urally, researchers have been investigating how to extract
these features in a task called Facial Expression Recogni-
tion (FER). However, some challenges come when evalu-
ating FER in uncontrolled scenarios. The face is, many

times, partially or fully occluded, and techniques that de-
pend solely on this information might not be able to perform
well.

Extending these works, researchers have been investi-
gating how adding other nonverbal cues could improve the
pipeline. Kosti et al. [11] proposed a baseline for this ap-
proach, in which both the person and the context in which
they are placed would be considered. Therefore, in the
case of occlusion, there would be other contributors to per-
ceived emotion. They also published the EMOTIC dataset
that serves as a baseline for validating these types of ap-
proaches. EMOTIC is still used widely in the literature to
validate techniques based on context.

Other techniques have also been proposed, such as
CAER-Net [14] and GLAMOR-Net [13], which employ
different formats of how to weigh context contributions and,
therefore, how important should be the contextual informa-
tion in each scenario. However, all of these techniques men-
tioned above have the same limitation by design: the lack of
definition of what should be considered as context. For ex-
ample, the approach proposed by [13] considers detecting
the face of a person, completely occluding it with a black
rectangle, and using this new image as a representation of
context. However, the other body parts are still visible, as
are the body parts of other people in the scene, and this
image would be fed to a context encoding stream that is
designed to extract features from the scene automatically.
However, are these encoding streams capable of doing this
task without prior knowledge?

Other approaches, such as EmotiCon [20], proposed that
it is necessary to use multiple independent and specialist
streams to generate representations that can be correlated to
emotion, given how context is highly descriptive. Specif-
ically for EmotiCon, as an example, the authors propose
the usage of the following context streams: (1) multimodal
context, with facial landmarks and body keypoints; (2) situ-
ational context, extracted by processing the background im-
age with the person occluded by using a pedestrian tracking
method; and (3) socio-dynamic context, which computes
proximity features using depth maps.

In a more recent approach, Chen et al. [6] proposed mod-
els combining different representations from context. For
example, they use a deep network for each person on the
scene to calculate their social relations between intimate,
not intimate, and no relation. They also propose a deep rea-
soning module for using multiple context representations
that are extracted locally and globally and involve scene
recognition and body pose estimation, among other mod-
ules.

However, humans perceive context differently [1,3]. The
literature suggests that humans encode context naturally by
using our internal representations of meaning in the image.
Therefore, it is not natural for us to take calculated steps to
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Figure 1. Examples of images from EMOTIC with their raw captions and processed captions.

understand context. Instead, our brain automatically classi-
fies these stimuli as positive, neutral, or negative based on
our previous knowledge of that information [21]. Our ap-
proach differs from the techniques mentioned earlier due to
the more straightforward approach for context, in which we
try to mimic the context representation of humans based on
our best knowledge of the literature on nonverbal commu-
nication and behavioral psychology.

3. High-level context representation
In this section, we describe our approach for extracting

high-level representations from context. Given how humans
describe and understand context in images, we propose ex-
tracting high-level descriptions of images to correlate them
with semantic features. This approach mimics how humans
correlate semantic descriptions with emotions to improve
interpretability.

3.1. Extraction of image descriptors

High-level descriptions. Given an image as input, we
first want to extract high-level image descriptions. We
employ ExpansionNet-v2 [9], an image captioning model
based on the Swin-Transformer architecture [16]. We first
traverse through the EMOTIC dataset, and for each sam-
ple, we input the image to ExpansionNet-v2 for captioning
generation.

We then process the raw caption to generate a refined
caption. First, we perform the removal of stop words from
the caption. Stop words are common words in a language,
such as articles, prepositions, and pronouns, but do not have
any semantic meaning. Therefore, maintaining these words
would only elevate the complexity, given their high fre-
quency in the English language, and by removing them, we
have a more representative corpus. We use spaCy1, a pub-
lic library for natural language processing. We also remove

1Available at https://spacy.io/

common nouns such as man, woman, girl, and boy. We
also applied lemmatization to reduce each word to its root
form. The remaining words are called valid words and will
be used in the following steps to generate data representa-
tions. Finally, we show examples of images, their original
captions, and their processed captions in Figure 1.

Co-occurrence mining. The second step involves the
generation of co-occurrence matrices that will represent pat-
terns of labels within the dataset, which will be employed
in the future through conditional probability. After prepro-
cessing the captions in the dataset, we store this information
and count the occurrence of each emotion, and the valid
words of each caption, resulting in a matrix Mc ∈ NW×C ,
where W is the number of valid words from the corpus and
C is the number of emotion categories in the dataset. There-
fore, Mcij denotes the number of times that emotion Cj oc-
curred when the valid word Wi also occurred. We call this
matrix the emotion co-occurrence matrix. Based on the
same assumption, we also generate a co-occurrence matrix
based on the co-occurrence of valid words. Given a window
of size s, we slide this window to capture the co-occurrence
of the valid words, resulting in a matrix Mw ∈ NW×W .
Therefore, MWij denotes the number of times that the valid
word Wi appeared together with the valid word Wj .

Semantic descriptions. For each valid word W , we ex-
tract semantic representations that can be correlated with
emotion. Given how ExpansionNet-v2 is a model to gen-
erate captions in a generic context, extracting the semantic
representations of the word will lead to better representa-
tions of affective meaning in that caption.

For extracting semantic descriptions, we employ Sentic-
Net [5], a knowledge base for semantics, sentics, and po-
larity associated with natural language concepts. We query
each valid word, and we extract the following attributes: the



Figure 2. Example of the generated graph. For brevity and visualization, we consider only one valid word in this scenario. For each valid
word node, we create nodes for emotions (also reduced for brevity), mood tags, and semantically-related words. For each semantically-
related word, we also query SenticNet and extract their semantically-related words, as shown in the ”transport” node.

two mood tags associated with the concept; the pleasantness
sentic, which represents the perception of pleasantness or
unpleasantness of the word; the polarity value, which rep-
resents the overall sentiment of the word and finally, the
semantically-related concepts.

Except for the valid word not existing on the SenticNet
knowledge base, we use WordNet [18,19] to search for syn-
onyms. The advantage of this approach is that the words in
WordNet are grouped using synsets, which are sets of syn-
onyms with similar concepts or meanings. Therefore, by
querying a word in WordNet, its synonym will have a sig-
nificant relationship and most surely have the same mean-
ing. For each possible synonym, we rank the list according
to the similarity with the valid word and iterate through the
list, selecting the first synonym present in SenticNet. In the
rare case that the valid word is not present on SenticNet and
neither are its synonyms, we drop the valid word from the
caption and proceed to the next step without it.

Graph generation. With this prior knowledge (e.g., co-
occurrence and semantic representations), we can capture
relationships between valid words and emotions and also
between themselves. Given how they are a particularly ef-
fective method of describing structured data, we choose to
model these representations using graphs. Although some
of the knowledge is learned prior, the definition and con-
struction of graphs are done as needed and in real-time.
This allows this technique to generate representations from
unseen data.

We use Deep Graph Library2, a framework-agnostic li-
brary for generating and manipulating graphs. We start
by constructing an empty graph G = (V,E), in which V
is a set of nodes and E is a set of edges. In this case,

2Available at www.dgl.ai

V = E = {∅}. For each valid word W , we start by adding
a new node VWi

to the before empty set of nodes V of the
graph. We use GloVe [23] to fetch the valid word embed-
ding and use this representation as the feature X ∈ R50 for
node VWi . If the valid word is absent on GloVe, we ran-
domly sample this embedding from a uniform distribution
[-0.01, 0.01]. We save this representation for future use in
case this valid word reappears.

Next, we add a node VC for each emotion category C
in the dataset. For EMOTIC, since we have 26 possible
emotions, we add 26 nodes and place edges e = (VW , VCi

)
between the valid word and each emotion. We define the
weight we according to the equation below:

we = P (Ci|W ) =
MCW,i∑
MCW

, (1)

where the edge weight we between the valid word node
VW and the ith emotional category Ci is P (Ci|W ), which
is given by the co-occurrence between the valid word W
and emotion category Ci divided by the sum of the co-
occurrence between the valid word W and all possible emo-
tions C, extracted from the co-occurrence matrix M . Next,
we add nodes related to the sentic semantic description of
the word. First, we add two nodes relative to the mood tags
extracted from SenticNet, and we set the weights of the edge
between the valid word node and them to be the pleasant-
ness value of the word. Next, we add five nodes relative to
the five semantically-related words available from querying
SenticNet and add edges using the polarity value as weight.

For each of the five semantically-related words to the
valid word, we also query SenticNet and extract their five
semantically-related words. The polarity value of the word
in the first level gives the edge between these connections.
We hypothesize that by adding another level of semantic



Figure 3. Our proposed architecture for high-level context representation. Given an input graph that is generated using previously learned
knowledge and image captioning, we use an adaptation of Graph Isomorphism Network (GIN) [25] to classify it among a set of emotions.
Given how EMOTIC also has annotations using a continuous model, we adapt the pipeline to generate two predictions, which are considered
to calculate the loss.

relationships, we will be able to extract even deeper repre-
sentations of context.

We perform the same process for each valid word W in
the caption. After the nodes for all valid words are created,
we add edges between these nodes. The weight of each edge
is given by the co-occurrence of the words MWi,j

, divided
by the total number of times the word appeared. Finally, we
show an example of the graph with reduced information for
brevity in Figure 2.

3.2. Deep GCN for Emotion Recognition

Given the construction of graphs to represent context, we
use a deep graph convolutional neural network for graph
classification and, consequently, for emotion recognition.
Given a set of graphs G1, ..., GN and a set of emotion cat-
egories C ∈ R26, we aim to classify each graph according
to an emotional category. For this task, we propose adapt-
ing Graph Isomorphism Network (GIN) [25], chosen due
to its simple architecture, which could lead to reasonable
inference rates in low-energy, low-consumption devices.

First, given a graph as input, we store this graph’s fea-
tures directly in the hidden representations stack as h0. Af-
ter this, we loop through a GIN convolutional block con-
taining a GIN layer, batch normalization, and ReLU. We
iterate over this block five times in this approach, generat-
ing representations h1 to h5. Finally, we iterate through the
hidden representations, average pooling these features and
reducing their dimensionality. In parallel, we keep a stream
for the categorical classification, which outputs classifica-
tion labels C, and another stream for continuous predictions
for a VAD model. The VAD model [17] is a common ap-
proach for emotion recognition which represents emotions
in a three-dimensional space, where each dimension corre-
sponds to a different aspect of the emotional experience.

The VAD model is composed of Valence, Arousal, and

Dominance. The Valence (V) axis refers to how pleasant
or unpleasant emotion is to the individual experiencing it.
Arousal (A) represents the level of energy associated with
the emotion; high arousal, for example, is related to more
energetic, excited emotions, while lower arousal is to more
calm emotions. Finally, Dominance (D) reflects the de-
gree of control or power the person feels over this emo-
tional state. Researchers have found that different emotions
tend to cluster in regions of the VAD space, reflecting their
shared aspects and underlying representation. Therefore,
each emotion can be represented as a linear combination of
the three axes [10].

Therefore, we learn categorical labels and continuous
values during training. We define our loss as a weighted
combination of the individual losses of each output. Given
a prediction ŷ = (ŷcat, ŷcont) in which ŷcat ∈ RC and
ŷcont ∈ R3, we define the loss in this prediction as L =
λcatLcat + λcontLcont, where Lcat and Lcont represents
the loss of each individual prediction. For Lcat implement
a weighted euclidean loss as used in EMOTIC [12], which
is defined as follows:

L2cat
(ŷcat) =

26∑
i=1

wi(ŷcati − ycati)
2, (2)

in which ŷcati is the prediction for the ith category and ycati
is its ground-truth label. The weight wi is defined as wi =

1
ln(c+pi)

, where pi is the probability of the ith category and
c is a parameter to control the range of valid values. We also
employ a L2 loss for Lcont, defined as:

L2cont
(ŷcont) =

3∑
j=1

(ŷcontj − ycontj )
2. (3)

Finally, we train our model on the EMOTIC dataset us-
ing the abovementioned features. We use the default Py-



Torch data loader and implement access to the list of graphs
to feed the model during execution. We show an overview
of our model on Figure 3.

4. Experiments
Dataset. We perform our experiments on the Emotions in
Context dataset (EMOTIC) [12], using the 2019 version,
to allow direct comparison with the state-of-the-art. This
dataset is focused on samples of people in their unposed en-
vironment and, therefore, comprises images with real, felt
emotions and expressions. Another focus of this dataset is
to have images with context visibility and variability, mean-
ing that the images are framed with contextual informa-
tion and that various contexts are present among the sam-
ples. The authors also gathered samples from other well-
established datasets, such as COCO [15] and ADE20K [29],
extending these images with emotion annotations.

EMOTIC was annotated using the Amazon Mechanical
Turk service. The images on the training set were anno-
tated only once, while the test and validation sets were an-
notated by three and five annotators, respectively. Accord-
ing to the authors, the dataset contains 23,571 images with
34,420 annotated subjects, 66% males and 34% females,
10% children, 7% teenagers, and 83% adults. Differently
from what the literature on behavioral psychology suggests
[8], EMOTIC employs 26 emotional categories proposed
based on word connections and inter-dependence of words,
forming, therefore, word groupings. However, the dataset
lacks the Neutral category, which can harm the annotation
process.

Comparison with the state-of-the-art. We compare our
results with other techniques of state-of-the-art, namely
EMOTIC [12], Zhang’s work [28], EmotiCon [20], DRM
[6], LEKG [6], which are two variations of Chen’s method
[6], and Yang’s work [26]. However, as we later describe in
Table 1, these techniques are often built on top of a combi-
nation of multiple nonverbal cues.

Validation metrics. Besides the quantitative evaluation
using the mean average precision (mAP) metric, as is done
in the current literature [6, 11, 12, 20, 28], we present some
examples to perform a brief qualitative evaluation of the
predictions.

Implementation details. We train our model from
scratch, learning the parameters using Adadelta [27]. After
an empirical comparison of multiple values on the valida-
tion set, the batch size is set to 16. We use a learning rate of
0.001 and a weight decay of 0.0004.

Regarding the experimentation environment, we train
and validate our model on a desktop computer running

Technique mAP # of nonverbal cues

EMOTIC [12]
27.38

2 (body and context)
20.47*

Zhang [28] 28.42 1 (context with two streams)

EmotiCon [20]
35.48 4 (face description, body pose, context

and depth mapping)26.87*

DRM [6] 26.48
5 (three body descriptions and two
context descriptions)

LEKG [6] 29.47
2 (scene recognition and
global context)

Yang [26] 37.73 5 (face landmarks, body pose, context,
relationships, and agent-object interaction)

Ours 30.02 1 (single-stream context)

* Chen’s reproduction of the work, as reported in [6]

Table 1. Quantitative evaluation of our approach compared with
state-of-the-art models on EMOTIC dataset.

Ubuntu 20.04 LTS with an Intel i7-4790K with 32 GB of
RAM and an NVIDIA RTX 2080 Ti with 12GB of VRAM.
For training and experimenting with our model, we use Py-
Torch 1.12 with CUDA 11.3 and CuDNN 8.3.2. For the ex-
perimentations regarding inference time, we also compare it
with a consumer-grade notebook with Windows 10 Pro, 16
GB of RAM, and an NVIDIA GeForce GTX 1060M with
6GB of VRAM.

5. Results and discussion
We compare our results with different approaches in

Table 1. Our proposed method outperforms other graph-
related methods, such as the work by Zhang, Liang, and
Ma [28], and also DRM and LEKG, which are two varia-
tions of Chen et al. [6]. We did not compare our method
with Chen’s TEKG model because it has a local approach
that could not be extended to real-world problems by itself.
Although EmotiCon [20] reported a higher mAP than our
method by 5.46 mAP, according to Chen et al. [6], their re-
sult of 35.48 mAP is not reproducible, reporting a score of
26.87 mAP, in which our method can perform by 3.15 mAP.
Additionally, EmotiCon uses four nonverbal cues, while we
only employ one. Yang et al. [26] reports the highest mAP
in this dataset, with a result of 37.73 mAP, which is 7.71
mAP higher than our result, by also employing five non-
verbal cues. Therefore, we demonstrate that our model is
competitive with the state-of-the-art, even with just one cue.
While Zhang, Liang, and Ma [28] also use only one cue,
they process it at two levels and can be considered two con-
textual cues.

The number of nonverbal cues employed is directly re-
lated to the inference time of the model, a question that
we wanted to tackle. Emotion recognition models should
be easily deployed on edge when thinking about real-world
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Figure 4. Qualitative results of our model on the EMOTIC dataset. For each image, we have the ground-truth emotion as annotated in the
dataset and the prediction of the network.

Method mAP
GIN [25] (AvgPooling) 0.3002
GIN [25] (SumPooling) 0.1715
Simple GCN 0.2505

Table 2. Ablation study of the proposed method.

situations. This would allow for multiple data capture and
processing points without increasing spending too much or
requiring high energy consumption. These are two current
barriers imposed when deploying deep learning models in
the wild. However, in cases where multiple cues are needed,
our model could act as a context encoding stream, even with
a convolutional neural network, to extract descriptions and
contribute to the overall perception of emotion.

We conducted ablation studies on our model to assess its
performance under different configurations. Our findings,
present in Table 2, indicate that using sum pooling instead
of the current pooling approach for GIN results in inferior
performance. Furthermore, we also compared the perfor-
mance of our model with that of using a simple GCN con-
sisting of two GCN blocks, ReLU activations, and a clas-
sifier. Our model outperformed this simple GCN, which
resulted in a lower mAP.

We also evaluate our model with a qualitative analysis,
as shown on Figure 4. For each model on the EMOTIC test
set, we feed this image to the proposed pipeline, generating
categorical predictions for the image. Although the model
can also generate results using the VAD model, it is dif-
ficult for humans to understand and compare these values
since this is unnatural for us. Therefore, we choose to use
only categorical values for the qualitative evaluation. This

experiment shows, as expected that our method looks for
cues in context for emotion prediction. In Figure 4a and
Figure 4b, the model could predict all categories present on
the ground truth. In this case, given how the context is rep-
resentative, our model can act well and give an overview of
the emotion in that scene. In opposite cases, such as Fig-
ure 4c, the context is not representative, and the network
cannot predict any correct emotion class. In Figure 4d, the
context is related to a set of emotions, for example, positive
emotions, but the perceived emotion of the person is actu-
ally negative. In this example, when looking at the person,
we can perceive an emotion related to tiredness, which is
confirmed by the ground truth Fatigue. However, since the
model does not look at face or body language from context,
it perceives the wrong emotion. Finally, for Figure 4e and
Figure 4f, the context is very generic, but the model can
extract cues from it and classify correctly, at least on some
level.

Finally, we test our model on different environments to
assess the computational power required and the inference
time. We execute the entire testing pipeline by setting a
batch size of 1 for individual predictions and evaluate on
both environments described in Section 4. We store each
individual prediction into a list and then compute the mini-
mum and average values. The minimum value indicates the
sample in which the inference was faster, while the average
value indicates the average inference time for the model.
In a moderate deep learning machine, the inference of our
model took 4.0264ms as a minimum, and 4.1546ms on av-
erage, leading to ≈ 248 fps and ≈ 240 fps, respectively.
For a consumer-grade notebook, the inference of our model
took 8.9597ms as a minimum, and 10.3898ms on average,
leading to ≈ 111 fps and ≈ 96 fps, respectively. Finally, on



the same consumer-grade notebook without using CUDA,
the inference of the model took 13.0021ms as a minimum
and 17.7365ms on average, leading to ≈ 77 fps and ≈ 56
fps, respectively, on an Intel Core i7-7700HQ @ 2.80GHz
CPU.

We do not compare our inference time with the other
techniques we evaluated above since neither has official
open-source implementations. However, we may infer that
models such as EmotiCon, which uses various other deep
learning models to extract and process specific cues, would
take longer than ours for execution.

6. Conclusion

In this work, we present an approach for emotion recog-
nition based on contextual cues of the image. Our proposed
approach uses image captioning to generate high-level de-
scriptions of the image. Then, together with data mining
and semantic analysis of the words, we generate and employ
graphs that are high-level representations of the context. Fi-
nally, we employ graph classification approaches to classify
the graphs among a set of emotional categories. Although
other authors are basing their approach on multi-modality
and various descriptions of context, this simple approach is
effective and comparable to the more robust models. Fi-
nally, we show that our technique is fast and requires low
computational power, allowing for easy and cheap deploy-
ment in multiple scenarios.

For future works, we plan on combining these high-level
representations of context into a multi-cue model that also
works with faces and body language to tackle the cases in
which the context did not match the perceived emotion of
people on the scene.

Acknowledgments

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001.

References
[1] Lisa Feldman Barrett and Elizabeth A Kensinger. Context is

routinely encoded during emotion perception. Psychological
science, 21(4):595–599, 2010. 2

[2] Lisa Feldman Barrett, Kristen A Lindquist, and Maria Gen-
dron. Language as context for the perception of emotion.
Trends in cognitive sciences, 11(8):327–332, 2007. 2

[3] Lisa Feldman Barrett, Batja Mesquita, and Maria Gendron.
Context in emotion perception. Current Directions in Psy-
chological Science, 20(5):286–290, 2011. 2

[4] Ross Buck. Nonverbal communication: Spontaneous and
symbolic aspects. American behavioral scientist, 31(3):341–
354, 1988. 1

[5] Erik Cambria and Amir Hussain. Sentic Computing: a
common-sense-based framework for concept-level sentiment
analysis. Springer Cham, 2015. 3

[6] Jing Chen, Tao Yang, Ziqiang Huang, Kejun Wang, Me-
ichen Liu, and Chunyan Lyu. Incorporating structured emo-
tion commonsense knowledge and interpersonal relation into
context-aware emotion recognition. Applied Intelligence,
53(4):4201–4217, 2023. 2, 6
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