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Abstract

The Deep Image Prior (DIP) technique has been suc-
cessfully employed in Compressive Spectral Imaging (CSI)
as a non-data-driven deep model approach. DIP method-
ology updates the deep network’s weights by minimizing
a loss function that considers the difference between the
measurements and the forward operator of the network’s
output. However, this method often yields local minima as
all the measurements are evaluated at each iteration. This
paper proposes a stochastic deep image prior (SDIP) ap-
proach, which stochastically trains DIP networks using ran-
dom subsets of measurements from different CSI sensors in
a CSI fusion (CSIF) setting, resulting in the improvement of
the convergence through stochastic gradient descent opti-
mization. The proposed SDIP method improves upon the de-
terministic DIP and requires less computational time since
fewer forward operators are required per iteration. The
SPID method provides comparable performance against the
state-of-the-art CSIF techniques based on supervised data-
driven and unsupervised methods, achieving up to 5 dB in
the reconstruction.

1. Introduction
Deep neural networks (DNNs) for solving inverse prob-

lems have gathered significant interest in the research com-
munity since their high recovery performance [3, 17, 18,
24, 32]. These methods can be classified into two sub-
categories: supervised and unsupervised. The first involves
training a DNN using a paired dataset to transform the ob-
served measurements into the target data. Several DNN-
based methods have been proposed in a wide range of in-
verse problems [8, 19–21, 25, 34]. [17, 24]. For CSI, black-
box DNNs have been proposed [30], or recently unrolling-
based methods which leads to interpretable DNNs from op-
timization approaches [12, 22, 23, 31]. Despite their out-
standing results in image recovery, supervised DNNs are
highly dependent on the quality and quantity of the training
data. In fact, if the training data is limited, such as in CSI,
the performance of these methods can be sub-optimal.

Also, unsupervised methods do not employ paired mea-
surements and target data. The seminal work on deep image
prior (DIP) [28] has opened new horizons on unsupervised
methods. The DIP approach consists of a DNN as a gen-
erative model which obtains the target image from a latent
space (usually sampled from a Gaussian distribution). In
particular, the DNN parameters are fitting by minimizing
the loss function, which measures the discrepancy between
the generated image projected by the acquisition operator
and the acquired measurements. The DIP framework has
effectively adapted to CSI where the latent space can be
learned based on a Tucker representation [5], or the DNN
architecture can be designed based on the Linear Mixture
Model [11]. One of the main characteristics of DIP frame-
works consists of only one-sample training, whereby solely
the measurements are necessary to compute the error of the
network predictions. However, this approach inhibits the
use of stochastic gradient descent (SGD) techniques where
the network inputs are randomly sampled during each it-
eration, which presents a challenge for evading local min-
ima. SDG has shown remarkable results in improving over
parametrized DNN training convergence [1, 33] and these
ideas have been extended to convex optimization for imag-
ing inverse problems in imaging [27].

In CSI, it is possible to acquire several measurements of
the scene (multishot acquisition); specifically, the CSI sys-
tems are able to capture the coded information of the whole
scene. Even we can employ multiple CSI systems follow-
ing a CSI fusion (CSIF) scheme. CSIF uses two compres-
sive acquisition systems that employ synthetic apertures to
acquire measurements at different resolutions, which are
then used in a recovery algorithm that fuses the spectral
encoded information in a single estimation of the spectral
image. To solve the CSIF problem; [29] presents an al-
gorithm based on the alternating direction method of mul-
tipliers (ADMM) with sparsity and total variation priors,
and [9] promotes non-local low-rank prior on the abundance
of the spectral image via an ADMM formulation. Recent
DNN-based methods have adopted a model-based formu-
lation, such as networks designed from the iterations of
half-quadratic splitting in [13] and ADMM-inspired formu-
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lation in [14, 26]. However, state-of-the-art methods cur-
rently utilize the complete observation set to optimize the
objective function, which can be computationally expensive
when estimating high-dimensional signals like spectral im-
ages. Additionally, complete optimization may rely on early
sub-optimal solutions due to bias towards specific measure-
ments.

Consequently, we proposed stochastic deep image prior
(SDIP) for multi-shots CSIF. The proposed method stochas-
tically trains DIP networks employing random subsets of
the CSI measurements from different CSI sensors. The net-
work estimation is passes through the corresponding subset
of sensing matrices. As a result, the entire set of measure-
ments undergoes stochastic evaluations at each iteration,
yielding analogous dynamics of employing stochastic train-
ing samples at each iteration in supervised methods, leading
to improved convergence through SGD optimization. The
SDIP improves the deterministic DIP and requires less com-
putational time since fewer forward operators are needed for
each iteration. Finally, the proposed method is compared
with unsupervised fusion methods showing an improvement
of up to 5 dB in PSNR.

2. Compressive Spectral Image Fusion Obser-
vation Model

Two well-known CSI sensors are used; the coded aper-
ture snapshot spectral imager (CASSI) and the multispec-
tral color filter array (MCFA). Similar to [14], CASSI is as-
sumed to have a high spectral resolution but with low spatial
resolution, and the MCFA provides a high spatial resolution
and a low spectral resolution.

CASSI model: the linear model of the CASSI image
formation is formulated as follows

yℓ
c = Hℓ

cf + ωc, (1)

where f ∈ RMNL is the vectorization of the high spatial-
spectral resolution image with M ×N spatial pixels and L
spectral bands. Let us denote Md = M

rs
and Nd = N

rs
,

then yℓ
c ∈ RMd(Nd+L−1)sc is the compressed measure-

ments, rs > 1 is the spatial down-sampling factor, ℓ is the
CASSI shot index ωc is an additive Gaussian noise, and
Hℓ

c ∈ RMd(Nd+L−1)sc×MNL is the sensing matrix for ℓ-th
shot [4, 6] with sc number of snpashots.

MCFA model: the linear model of the MCFA system is:

yℓ
m = Hℓ

mf + ωm, (2)

where yℓ
c ∈ RsmMN is the compressed measurements, ωc

is an additive Gaussian noise, and Hℓ
m ∈ RsmMN×MNL

is the sensing matrix for ℓ-th shot with sm number of snap-
shots

Then, we define the whole set of measurements of the
CSIF setting as follows

y = Hf +w, H =

[
Hc

Hm

]
, (3)

where the whole sensing matrix H is composed of the
CASSI Hc and the MCFA Hm sensing matrices. Hc

is the vertical stack of the sensing matrices related to
the CASSI system, i.e., Hc = [(H1

c)
⊤, . . . , (Hsc

c )⊤]⊤,
and similarly the Hk

m is the vertical stack of the sens-
ing matrices related to the MCFA system, i.e., Hm =
[(H1

m)⊤, . . . , (Hsm
m )⊤]⊤. Two important factors in CSI

are the number total of snapshots for both systems s =
sc + sm and the compression ratio, which is defined as
γ = sc(Md(Nd+L−1))+sm(MN)

MNL .

3. Deep Image Prior for CSI Recovery
We aim to recover the spectral image f from the com-

pressed measurements of the CASSI and MCFA systems.
The main idea of DIP for CSI is that untrained DNN is
optimized to map a random vector sampled from a Gaus-
sian distribution, z ∈ Rm, to the desired spectral image as
f̂ = Nθ̂(z) where Nθ̂(·) represents the DNN, and θ̂ are
its optimal parameters (see Fig. 1(a,b) ) obtained by solving
the following optimization problem

θ̂ = argmin
θ

∥y −HNθ(z)∥22. (4)

Inspired by our previous work [5], we promote low-rank
over the latent space via learning a tucker representation
of the spectral image as DNN input. Specifically, Z ∈
RM×N×L is the low-rank tensor DNN input of the form
Z = Z0×1U×2V ×3W where ×1,×2,×3 are the tensor
mode product in the first, second and third dimension, re-
spectively. The core tensor, Z0 ∈ RMρ×Nρ×Lρ, and the ma-
trices U ∈ RMρ×M ,V ∈ RNρ×N ,W ∈ RLρ×L have the
following relationship with a rank factor ρ as Mρ

M =
Nρ

N =
Lρ

L = ρ, thus promoting low-rank representation, which has
proven to be a valid assumption in this type of data [9, 10].
Moreover, the variables Ω = {θ̂, Ẑ0, Û , V̂ , Ŵ } can be
trained following the DIP methodology by solving

Ω̂ ∈ argmin
Ω

∥y −HNθ(Z)∥22 (5)

subject to Z = Z0 ×1 U ×2 V ×3 W .

In the baseline DIP framework, the loss function is com-
puted with the whole set of observations in every iteration
of the network training, which can lead to falling into local
minima.

4. Stochastic Deep Image Prior
The proposed method stochastically trains DIP networks

employing random subsets of the CSI measurements from
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Figure 1. Stochastic Deep Image Prior. (a, b) The estimated spec-
tral image is generated from the tucker representation f̂ = Nθ .
(c) Then, the matrices subset Hℓ

c and Hk
m are randomly selected

for the stochastic loss function computation.

different CSI sensors, as shown in Fig. 1. Therefore, let us
decompose the main loss function g(f) = ∥y −Hf∥22 as

g(f) =
1

s

s∑
i=1

gi(f)

where gi(f) = ∥yi −Hif∥22. Note that depending on the
index i, the function can take either the observation of the
CASSI system or the MCFA sensor. Thus, we now consider
a subset of index Si = {i1, i2, . . . , iB} where B = |Si|
is the minibatch size and the indexes i1, i2, . . . , iB are uni-
formly sampled from T = {1, 2, . . . , s}. Then, the stochas-
tic approach solves the following optimization problem

min
Ω

g(Nθ(Z)) = ESi∼T
[
∥yik −HikNθ(Z)∥22

]
(6)

subject to Z = Z0 ×1 U ×2 V ×3 W ,

for k = 1, . . . , B. In this sense, B can be related to the
batch size in SGD optimization. This formulation brings
two main advantages. The first one is that it reduces the
computational complexity of the training since only a por-
tion of the whole sensing matrix is needed to compute the
loss function. The second one is convergence acceleration
given by the properties of first-order stochastic optimiza-
tion. Particularly, the optimization of (6) performed by
SGD with a randomly selected snapshot of the compressed
measurements set Si is given by

Ω̂i+1 = Ω̂i − η
1

B

∑
ik∈Si

∂

∂Ω
gik(Nθ(i)(Zi)) (7)

where Z(i) = Z(i)
0 ×1 U

(i) ×2 V
(i) ×3 W

(i) and η is the
gradient step size. It is important to highlight that the gra-
dient direction will depend directly on the set of measure-
ments randomly chosen at each iteration Si ∼ T . There, the
DNN weights are updated according to the stochastic gradi-
ent iteration, and the desired recovery image is obtained as
f̂ = Nθ̂(Ẑ).

5. Results
To validate the proposed stochastic DIP framework for

CSIF, we employ the peak signal-to-noise ratio (PSNR) and

the structural similarity index (SSIM) in two main experi-
ments. The first one is an ablation study varying the number
of batches per iteration, and it is directly compared concern-
ing the deterministic DIP.The second compares the state-
of-the-art methods for CSIF, we compared two deep su-
pervised learned-based methods, LADMM [26], and D2UF
[14], which are unrolling networks based on ADMM it-
erations and one unsupervised optimization-based spectral
image fusion from compressive measurements (SIFCM)
which is an ADMM algorithm with sparsity and total varia-
tion prior [29]. As DIP networks, we employ a ResNet and
U-Net according to the author’s implementation in [5]. All
experiments were performed in GPU NVIDIA RTX 3090.

5.1. Stochastic DIP experiments

In order to evaluate the importance of the batch size, we
employed the testing images of the KAIST dataset [7] with
a size of M = N = 512 and L = 31. The number of snap-
shots acquired by the CASSI and MCFA systems was set to
sh = sm = 4 yielding s = 8 total number of snapshots of
the scene. The spectral and spatial decimation factors were
set to rs = 2, and rλ = 10; particularly, the value rλ was
chosen such that the MCFA sensor works as an RGB camera
with arbitrary CFA. Then, the compression ratio of the CSIF
model is γ = 0.165. The synthetic apertures of both sys-
tems are drawn from a Bernoulli distribution with p = 0.5.
The network employed here was the ResNet, the number
of iterations was chosen to be 15000, and the network opti-
mizer was the Adam algorithm [16] with a learning rate of
η = 10−3. All the results reported in this experiment are
the mean of 5 runs.

The proposed SDIP was tested with varying batch batch
size B, B = {3, . . . , 8} where B = 8 represents the vanilla
DIP. Fig. 2(a) shows the reconstruction performance of the
SDIP in terms of PSNR along the running time for different
values of B. Notably, with B = 6, the performance im-
provement with respect to the vanilla DIP is up to 5 dB, and
the time required for stochastic training is noticeably less
than for deterministic optimization. It is important to re-
mark that the same number of gradient iterations was fixed

a b

Figure 2. a) PSNR score along running time in seconds of SDIP
with different values of B. b) Loss function for different values of
B along training iterations. The y-axis is in logarithmic scale.
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GT SIFCM LADMM SDIP B=4 SDIP B=6D2UFa
SAM31.58/0.819 27.57/0.759 36.97/0.896 38.01/0.946 38.18/0.948 PSNR/SSIM

P1

P1

b

Figure 4. a) RGB visualization comparison with state-of-the-art methods, SIFCM [29], LADMM-NET [26], D2UF [14], and the proposed
method SDIP for B = {4, 6} on the ICVL dataset, upper-right numbers show the PSNR and SSIM scores. b) Spectral reflectance and
SAM score comparison of a random point compared to the reference signature.

Method Unsupervised SNR = 20 [dB] SNR = 25 [dB] SNR = 30 [dB] SNR = 35 [dB] SNR = ∞
PSNR ↑ SSIM↑ SAM ↓ PSNR↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓ PSNR↑ SSIM ↑ SAM ↓

LADMM-Net [26] X 24.33 0.486 0.390 26.42 0.661 0.277 27.51 0.768 0.208 27.91 0.815 0.176 28.13 0.840 0.157
D2UF [14] X 30.02 0.701 0.333 33.111 0.839 0.239 35.192 0.904 0.193 36.326 0.936 0.168 37.02 0.951 0.151

SIFCM [29] 20.33 0.245 0.658 24.22 0.407 0.486 27.15 0.570 0.337 29.02 0.701 0.210 30.19 0.816 0.170
SDIP B = 4 25.63 0.212 0.695 28.77 0.414 0.510 31.49 0.695 0.283 32.58 0.845 0.197 35.65 0.934 0.136
SDIP B = 6 26.59 0.138 0.765 29.46 0.312 0.575 30.95 0.703 0.278 34.83 0.907 0.157 35.59 0.913 0.139

Table 1. Numerical results of SDIP with state-of-the-art CSIF methods for the ICVL with compressed measurements corrupted by different
levels of SNR. The highlighted green values are the best performance and the blue ones are the second best.

for all scenarios. Results suggest a trade-off between the
total recovery time and the final spectral image quality esti-
mation with respect to the B-value. Furthermore, Fig. 2(b)
shows that the improvement in running time is coupled with
an improvement in loss function optimization convergence
for B < 8, as the cost function achieves lower values than
the vanilla DIP (B = 8). Therefore, we selected 4 and 6 for
the following experiments, comparing our SDIP with the
state-of-the-art CSIF.

5.2. State-of-the-art comparison

We conducted a comparison with state-of-the-art CSIF
methods using the ICVL dataset [2]. To train the supervised
LADMM-Net, and D2UF, we use 140 images for training
and 20 for testing and the parameters suggested by the au-
thors. A central crop of the image was taken with a size of
M = N = 256. The MCFA and CASSI systems were set to
sm = sh = 4 shots, similar to the previous experiment. For
this experiment, the U-Net was used as a DNN generator.

Table 1, provides a quantitative comparison of the eval-
uated methods under different levels of additive Gaussian
noise SNR={20, 25, 30, 35,∞}. While the supervised ap-
proach D2UF yields the best results, on average, for un-
supervised methods, SDIP achieves the best results, with
comparable results to supervised methods for SNR of 35
and noiseless scenarios. One of the main reasons for poor
performance under low SNR values is that the baseline DIP
loss function is based only on the noisy measurements,
yielding a noisy estimation of the image. Recent works have
been proposed to improve DIP under noisy observation by
changing the loss function as Stein’s unbiased risk estimator
metric [15] that considers the noise level.

Figure 4(a) shows a testing RGB visualization of state-
of-the-art supervised, unsupervised, and SDIP methods, for

B = {4, 6} in the noiseless case (SNR=∞). The proposed
method obtains the best results in PSNR and SSIM scores.
Interestingly, the proposed method achieves comparable re-
sults even when compared to supervised-based deep learn-
ing methods. Furthermore, the proposed method has the
added benefit of being able to recover spectral signatures
that fit the behavior of the reference signatures (as shown in
Fig. 4(b)).

6. Conclusion
The proposed SDIP method for multishot CSIF improves

the vanilla DIP method in terms of estimation quality and
convergence rate. Stochastic optimization is achieved by
randomly selecting snapshots to compute the DIP loss func-
tion. This optimization strategy offers two main benefits:
the first is an improvement on the DIP running time since
fewer forward sensing operators pass are required at each
iteration, and the second is the benefits of the SGD op-
timization for DIP, leading to improve reconstruction per-
formance. Simulation shows that a proper choice of batch
size allows a significant improvement in recovery of up to
5 dB compared to the vanilla DIP with less running time.
Moreover, we compared SDIP with state-of-the-art CSIF,
providing comparable results with supervised methods and
performing significantly better with respect to unsupervised
approaches in different noise levels. It is worth noting that
the proposed SDIP method can be generalized beyond mul-
tishot acquisition and can be employed in imaging inverse
problems by selecting random partitions of the measure-
ments, thus providing a new method to train DIP.
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