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Abstract

Deep learning methods are state-of-the-art for spectral
image (SI) computational tasks. However, these meth-
ods are constrained in their performance since available
datasets are limited due to the highly expensive and long ac-
quisition time. Usually, data augmentation techniques are
employed to mitigate the lack of data. Surpassing classical
augmentation methods, such as geometric transformations,
GANSs enable diverse augmentation by learning and sam-
pling from the data distribution. Nevertheless, GAN-based
SI generation is challenging since the high-dimensionality
nature of this kind of data hinders the convergence of the
GAN training yielding to suboptimal generation. To sur-
mount this limitation, we propose low-dimensional GAN
(LD-GAN), where we train the GAN employing a low-
dimensional representation of the dataset with the latent
space of a pretrained autoencoder network. Thus, we gen-
erate new low-dimensional samples which are then mapped
to the SI dimension with the pretrained decoder network.
Besides, we propose a statistical regularization to control
the low-dimensional representation variance for the au-
toencoder training and to achieve high diversity of sam-
ples generated with the GAN. We validate our method LD-
GAN as data augmentation strategy for compressive spec-
tral imaging, SI super-resolution, and RBG to spectral tasks
with improvements varying from 0.5 to 1 [dB] in each task
respectively. We perform comparisons against the non-
data augmentation training, traditional DA, and with the
same GAN adjusted and trained to generate the full-sized
SIs. The code of this paper can be found in https :
//github.com/romanjacome99/LD_GAN.git

1. Introduction

Spectral imaging involves acquiring a collection of 2D
images which contain specific electromagnetic radiation
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from light, known as a spectral image (SI). The spectral
information allows the estimation of unique characteristics
and distribution of the different materials. SIs have been
used for computer vision tasks related to object classifi-
cation [24], image segmentation [©], salient object detec-
tion [47], and object tracking [ 7], which have been widely
applied in fields such as medical applications [27], earth
observation [30], food quality [35], and surveillance [10],
among others.

The recent advances in data-driven deep learning (DL)
methods have opened new frontiers for SI processing, ac-
quisition, and its applications [32]. Some examples are in
hyperspectral, and multispectral image fusion [22, 23, 43],
classification [0, 24], recovery methods for snapshot com-
pressive spectral imaging (CSI) recovery [7,20] or mapping
RGB images to SI [44]. While one of the main reasons for
the great success of DL in a wide range of applications is
that the models can extract the intrinsic structure of large
datasets [26] improving its generalization performance, in
SI applications the datasets are limited in the number of
available samples due to the expensive and long acquisition
times [ |4]. Thus the performance of the DL methods is still
restricted to the constrained available data.

To address this issue, data augmentation (DA) strategies
are employed [39]. Traditional DA performs geometrical
transformations, such as flipping, rotation, and resizing the
original dataset to generate new training samples. However,
these approaches generate few invariances on the original
dataset, which are easily learned by the network. Recent ap-
proaches employ generative adversarial networks (GANs)
[13] to synthesize new samples based on learning the prob-
ability distribution of the original dataset and generating
synthetic samples from the learned distribution [2]. In the
context of SI generation, many works have been developed
as a data augmentation strategy for SI classification [15],
where conditional GANs are employed to generate new la-
beled data. A more related work is SHS-GAN [16], which
is a conditional GAN that creates new SI samples by map-
ping SIs from RGB images through a generator and em-
ploys a critic network to inject spectral information in the



mapped SIs. Also, methods based on variational autoen-
coders (VAE) have been proposed to generate only spectral
signatures in [33]. Unlike current SI generation methods
that are conditioned on labels or RGB images, we look to
generate new SI samples from unconditional GANs leverag-
ing the available spectral image datasets without additional
information.

However, training GAN for SI generation is challenging
due to the high dimensionality and the limited training of
SI samples. Theoretical studies describe these issues by de-
riving the convergence rate of the GAN estimator, yielding
that for high dimensional data and a low number of samples,
the convergence rate decreases, producing a sub-optimal
performance of the sample generation [5, 19, 28]. Experi-
mentally, projected GAN [38] has addressed this issue by
training GANSs using LD image datasets obtained from sev-
eral feature or codification networks. Unlike the projected
GAN, we look to develop a straightforward strategy for gen-
erating a unique LD representation of the SIs for training a
GAN. This approach differs from existing generative mod-
els based on dimensionality reduction such as VAE [25].
These methods aim to learn the dataset distribution via la-
tent variables that represent the mean and variance of the
distribution and with a Kullback-Leibler divergence regu-
larization approximate this distribution to Gaussian. Here,
we propose to learn the latent distribution with a GAN and
decode the image with a pre-trained decoder network. Ad-
ditionally LD representations of SIs are very suitable since
the high dimensionality of SIs produces high information
redundancy in this type of data. Other SI applications have
harnessed this in tasks such as the recovery of SIs from CSI
measurements [29], classification [ ] or unmixing [45].

The proposed LD-GAN for generating SIs trains an au-
toencoder (AE) network using a SI dataset to obtain an LD
image dataset. Then, a GAN is trained adversarially us-
ing the LD image dataset to generate new LD image sam-
ples. Finally, the generated LD image samples are decoded
through the AE network to obtain generated SIs. We pro-
pose a statistical regularization function over the LD rep-
resentation images in the AE training. This regularization
function promotes a variance minimization on LD space
along the batch of the training data, thus having a more
compact representation of the SI, yielding optimal decod-
ing. This criterion follows from contraction AE that im-
proves the LD representation by reducing the variability of
the representation concerning the decoder’s input [37]. Ad-
ditionally, since we are reducing the dimensionality of the
generated data, in order to produce more diverse LD sam-
ples that results in more variability of the SI, the generated
LD images are regularized for the GAN training by maxi-
mizing the variance of the LD image.

Since we are proposing an LD adversarial training
method, we also develop a high dimensional adversarial

training with the same GAN model in order to perform
comparisons but adjusting the subnetworks to generate the
full-sized SIs, which we will call from now on S-GAN.
Experimental results show that the proposed LD-GAN im-
proves upon the convergence of the GAN compared with S-
GAN. This improvement is further supported by the visual
quality of the generated SIs, which show that the proposed
method produces more realistic spatial and spectral infor-
mation compared to the S-GAN. We validate the proposed
LD-GAN as a DA technique for CSI recovery, SI spatial-
spectral super-resolution, and RGB to spectral tasks. We
present improvements varying from 0.5 to 1 [dB] with the
proposed method compared with the non-DA training, tra-
ditional DA, and with a GAN trained to generate the full
spectral image.

The rest of the paper is organized as follows. Section 2
is formulated as the traditional GAN. Thereafter, in section
3, we formulate the proposed LD-GAN. Then, section 4 de-
scribes the statistical regularization over the AE latent space
and the GAN-generated LD samples. Section 5 presents the
mathematical formulation of the SI applications employed
to validate the proposed methods. The experimental results
are disseminated in section 6. Finally, conclusions are pre-
sented in 7.

2. Generative Adversarial Network

Given a dataset {m(i) }Z.Kzl, with K images and (V) e
RMNL \where M , N are the spatial dimensions and L the
number of spectral bands and assuming that the dataset fol-
lows a distribution pga, (), which is unknown. Then, a
generative network G will learn the distribution p, from data
x. For the generative network, a prior is assumed on input
noise variables p,(z) where z € R™ and m is the random
variable dimension, usually a Gaussian distribution, which
are mapped to the desired generated images. Then, a dis-
criminative network D is also defined. This network will
receive the generated samples or dataset samples. The loss
function of a GAN [13] is

£gan(D, Q,I) = EmNPdma(w) [log (D(I(x)))] +
Bzrnp. () log (1 =D ((G(2)))], D)

where G and D are the generator and distriminator net-
works, respectively. Additionally, Z is an identity operator.
In the adversarial training, each network {G, D} competes
to achieve its goals: G will generate fake samples, and D
will predict if the received samples are real or fake. This is
called adversarial training and can be represented as

{G,D} = argmin argmax Lyan(D,G,Z).  (2)
D g

Despite GANs having achieved state-of-the-art results in
the generation of images, achieving proper convergence of
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Figure 1. Autoencoder and LD-GAN networks. a) The AE network allows obtaining an LD representation of the SI through an encoder
subnetwork and then reconstructs the original SI with a decoder subnetwork. b) The LD representation obtained by the AE is employed to
train a GAN to generate new LD representation images. c) Once the GAN is trained, the new LD images can be decoded to recover Sls.

GAN through adversarial training is challenging when the
employed dataset samples have high dimensionality and it
is limited in the number of samples, such as the generation
of SIs. In the following section, we will analyze the conver-
gence of the GANSs.

2.1. Analysis on the GAN Convergence Rate

Theoretical studies of the convergence properties of
GAN have been carried out concerning the dimensional-
ity of the data and the number of training samples. For
instance, in [28] derives an asymptotic bound of the total-
variation metric between an estimated distribution and the
real source data distribution, where the sample complex-
ity relies on the squared dimension of the data (in our case
MNL), and a logarithmic factor of the number of samples
of the training dataset [28, Theorem 19]. Also, in [19] pro-
vides an error analysis of GANs through convergence rates
of the integral probability metric, yielding sample complex-
ity that increases in terms of the number of training samples
and the dimension of the data [19, Theorem 5]. Moreover,
the convergence rate is improved when the source data can
be represented in an LD manifold [19, Theorem 19]. Con-
sequently, based on these theoretical insights on the GANs
convergence, we propose generating an LD representation
of the SIs to improve convergence on GANs and generate
high-spectral dimensional SIs by decoding them through
the pretrained AE network, described in the following sec-
tion.

3. Generative Adversarial Networks with Low-
Dimensional Representation

This section will describe the proposed LD-GAN where
LD samples are generated by a GAN and the synthetic SIs

are obtained by decoding the LD via a decoder network.

3.1. Spectral Image Autoencoder

An AE network is employed to obtain an LD representa-
tion of a SI dataset {=(¥ }/< | with K samples. Two subnet-
works give the structure of an AE, as shown in Fig. 1(a). An
encoder network E, which will compress the spectral infor-
mation of SIs, and a decoder network D, which will decode
the underlying SI. The optimization of these subnetworks is
given by

K
{E,D} =) ||z — D(E@="))[3, 3)
=1

where £ and D are the encoder and decoder, respectively.
Thus, an LD representation of a SI can be obtained as b =
E(z®) where b € RMN¢ and ¢ < L. Finally, SI can be

recovered by decoding this LD image as &) = D).

3.2. Low-Dimensional Generative Adversarial Net-
work

We employ a GAN that will be optimized with respect to
the LD representation of a SI dataset. Then, the adversarial
training from the equation 2 can be rewritten as

{Q, ﬁ} = argmin argmax L4, (D, G, E), 4)
D g

where the generative network can generate LD images as
e = G(z) and new SI samples can be obtained using the
decoder as f = D(e).



4. Statistical Regularization for the AE and
GAN

Towards improving the LD representations of the AE and
the diversity of generated LD images by the GAN, we pro-
pose a variance minimization regularizer in the AE train-
ing that allows a compact representation of the SI dataset in
the LD space, which improves AE recovery performance.
Then, we employed a variance maximization on the gener-
ated LD space for the GAN training to produce diverse data
and more quality on the generated SI dataset. This variance-
based regularization criterion has also been used for self-
supervised learning [8] and sparse-coding [12]. First, de-
fine set A = {e(")}/, that contains the LD representation
of the AE and define the set of generated LD images by
GAN as W = {dW}X . The variance of A is denoted
by 0% € Ri, and of the GAN generated representations
0'12/\, € R‘_i._ pixel-wise across the training batch dimension.
The proposed statistical regularization function is given by

R() = llof, 2. 5)
Then, the regularized AE training is performed as follows
{E,D} = argmin [ — D(E(@"))|13 + ptae R(A).
E,D

(6)
and the final GAN optimization problem is given by

{G,D} = arg min arg max Lgan (D, G, E) - Lgan ROWV).
D g
(7

Note that the negative sign in the variance regularization
function is because we want to maximize the variance of the
generated LD representation of the SI. In both optimization
problems, the AE and the GAN, the parameters (.. and
ltgan are regularization hyperparameters that control how
much we concentrate the AE LD space or how much we
increase the variability of the generated images by the GAN.

5. Spectral Image Applications

To validate the performance of our proposed method, we
address the following DL-based SI tasks:

CSI Recovery [7]: CSI is a technique that allows sens-
ing the whole 3D information of the SI with a 2D sensor
in a single shot [46] through coded projections of the high-
dimensional data and a computational algorithm to recover
the underlying SI. Several optical architectures have been
proposed for CSI. We employed the coded aperture snap-
shot spectral imager (CASSI) [40], which is the flagship
architecture in CSI [4]. This sensing phenomenon is ex-
pressed in a matrix-vector multiplication as y = Hx + n,
where y € RM(N+L=1) are the compressed measurements,
H ¢ RM(N+L=1)xMNL js the CASSI sensing matrix, x €

RMNL 5 the vectorization of the SI, and n € RM(N+L-1)
is additive noise from the acquisition process.

Single Image Spatial-Spectral Image Super-
Resolution: A well-known task for SI is to recover a
high spatio-spectral resolution SI from a low spatio-
spectral resolution SI [44]. In this task, the SI can be
downsampled spatially and spectrally by a decimation

matrix D € R%(’%) XMNL, where k; and k; represent
the decimation factor for the spatial and spectral resolution
of the SI, respectively. The low spatio-spectral resolution
image is represented as y = Dx + n.

SI Recovery from RGB Images: Another task that has
gathered significant attention from the research community
is the mapping from RGB image to SI [3]. This task consists
on recover a SI from an RGB image with a count with less
spectral information considering a known spectral response
function R € RMN3XMNL Then, the RGB image can be
represented as y = Rx + n.

Since the mentioned tasks are ill-posed problems, the
objective is to recover the SI x from the observed data
y = Az, where A could represent the sensing matrix H,
the decimation matrix D or the spectral response function
R, according to the selected problem. Then, we can solve
the DL-based SI computational tasks through the optimiza-
tion problem

K
o 1
6= in— Y [a®) - ®)13 8
argermnK 2 ||z Mo (y'™)|3, (®)

These are ill-posed inverse problems that are challenging.
Therefore, we aim to increase the performance of the net-
work M for each case by adding synthetic samples gener-
ated by the LD-GAN.

6. Numerical Experiments

In this section, we perform several experiments with the
AE network with different channels for the LD representa-
tion. For the GAN architecture, the deep convolutional gen-
erative adversarial network [36] was adapted to the spatial
size of the employed dataset, and the experiments are per-
formed with respect to the LD image dataset obtained from
the AE network against the entire-sized SI dataset. All ex-
periments were performed on GPU with an NVIDIA RTX
3090 graphic card. The dataset employed for all the ex-
periments is the ARAD 1K [3], which was preprocessed,
reducing the spatial resolution to 256 x 256 and keeping
the 31 spectral bands. This dataset contains 900 samples
for training and 50 samples for testing. We extract unique
patches with a spatial resolution of 128 x 128 obtaining a to-
tal of 3600 patches for training and 200 patches for testing.
Recovery performance is measured with the peak-noise-to-
signal ratio (PSNR) and the structural similarity index mea-
sure (SSIM) [18].
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Figure 2. Generated images for an LD representation with a) 3 bands and b) 8 bands. c) Generated SI samples from LD representation
employing the statistical regularizer with f1gen = ftae = 0.001. For a-c) the top images refer to the generated LD images and the bottom
images are the obtained SI by decoding the LD representation. d) Generated SIs without an LD representation. The bottom row represents
a false RGB mapping of generated SIs from their LD representations, except for S-GAN, which SIs is directly generated by the GAN.

6.1. AE Experiments

The compression of the Sls is only performed in the
spectral dimension, where several values for the number of
output channels ¢ = {1,3,8,16} of the encoder subnet-
work are evaluated. The encoder and subnetwork consist
of 7 convolutional layers with ReLU activations, which de-
crease the number of feature channels from 16¢ to c and the
decoder network has also 7 layers increasing the number of
features from c to 16¢ and a final convolutional layer with
L = 31 features to match the SI spectral dimension. Table
1 shows that for the evaluated number of channels, ¢ = 3
has the best performance. Thus, this level of compression
will be highly considered for the performance of the SI ap-
plications when the proposed method is applied.

Channels | PSNR [dB] 1 | SSIM ¢

1 33.72 0.9513
3 39.32 0.9739
8 38.37 0.9722
16 38.31 0.9679

Table 1. AE recovery performance for different latent channel
sizes. The highlighted green values are the best performance and
the blue ones are the second best.

6.2. GAN Experiments

We employ the LD images from the SI dataset using the
AE above mentioned to optimize the GAN. All GAN ex-
periments were trained for 50 epochs with a learning rate of
2¢~* for both the discriminator and the generator. The gen-
erator and the discriminator networks employ 2D transpose
convolution and 2D convolution layers , respectively. Each
subnetwork counts with batch normalization, and Leaky
ReLU activations, after the convolutional layer, following
the implementation given by [36]. All the experiments with
GANs employed a random input z € R ~ A(0,1).
In Fig. 2, some of the generated LD samples and their re-
spective SIs are shown for the LD-GAN with ¢ = {3, 8},

LD-GAN with the statistical regularization, and S-GAN.
To compare the effectiveness of the proposed method, we
adopt the employed GAN for directly generating SIs with-
out an LD representation, denoted as S-GAN. In Fig. 3, the
discriminator loss function is shown for different channels
c. The performance shows this behavior properly when the
GAN is trained on the LD image dataset. This performance
is far from the theoretical optimum when training is done
with S-GAN.

We analyzed the generated spectral information with the
proposed LD-GAN compared with the S-GAN. To this end,
we employ a widely used SI analysis technique which is the
linear mixture model [11]. This model states that a spec-
tral signature of a given pixel of the SI is represented by the
linear combination of the ¢ most representative signatures
of the SI. These signatures are denoted as endmembers and
the coefficients of the linear model are named abundance.
To extract the endmembers and the abundances of a SI, we
employ the hyperspectral vertex component analysis (Hy-
perVCA) [31] algorithm. Specifically, we employ Hyper-
VCA to extract the ¢ = 4 endmembers from the original
ARAD dataset, from the generated dataset by the LD-GAN

Discriminator Loss

L=31

1.2

0 10 20 30 40 50
Epochs
Figure 3. Discriminator loss function convergence for different
channels. L = 31 represents the performance by S-GAN.
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Figure 5. SI recovery performance in terms of PSNR and SSIM employing the proposed LD-GAN considering the number of channels
and compared with the S-GAN for a different number of generated SIs based on the percentage of samples from the original SI dataset as
a DA strategy for SI applications: (a) CSI recovery, (b) RGB to spectral recovery, and (c) SI super-resolution.

and by the S-GAN, as shown in Fig. 4 with the mean of e SI recovery from RGB images Setting: A variation of
100 images. The obtained results illustrate that generated the UNET architecture described for the SSSR case is
mean endmembers of the proposed LD-GAN are very sim- employed. UNET-based models have been previously
ilar with respect to the original dataset. This result allows proposed for RGB to spectral task [44]. To obtain the
concluding that the generated spectral data follow similar RGB input image for the network training and vali-
behavior to the original dataset. While the S-GAN has many dation, the spectral response provided by the ARAD
artifacts along the spectrum, which could affect negatively dataset [3] was used. For the training of this net-
the training of networks a DA strategy for DL-based SI ap- work, the learning rate decays exponentially to achieve
plications. a more stable convergence.

6.3. DA Applications o SI super-resolution setting: We employed a UNET

network with 4 downsampling and 4 upsampling con-
volutional blocks to reconstruct the high-resolution ST
from low-spatial low-spectral measurements. The se-
lection of the type of architecture is based on recent
SSSR works [42]. The spatial and spectral decimator
factors are set as ks = 2, k; = 4.

We validate the proposed method by generating a syn-
thetic SI dataset and employing it as a DA for DL-based,
CSI, SSSR, and RGB to spectral tasks. All of the follow-
ing networks were trained for 100 epochs with a learning
rate of 1e~>. From the obtained results, we report the best
performance from testing images for each experiment.

e CSI recovery setting: The unrolled network deep 6.4. Quantitative Results

spatial-spectral prior [41] was used for CSI recovery. For each SI application, we perform the recovery task
The measurements were simulated through the CASSI considering each of the generated SI datasets by LD-GAN
system using a random CA with 50% of transmittance. and S-GAN with 20%, 50%, and 100% new samples, (per-
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centages based on the number of samples from the origi-
nal dataset). As shown in Fig. 5, the higher performances
in terms of PSNR are achieved by LD-GAN with ¢ = 3.
Furthermore, when a comparison between S-GAN and LD-

GAN is performed, we can determine that not only LD-
GAN is better, but S-GAN has a lower performance than the
baseline in several cases. We also observe that the greater
the number of data generated employed as DA the higher
improvement of the performance for the SI applications is
obtained with the proposed approach.

6.5. Qualitative Results

Visual results of a reconstructed SI from the test dataset
are shown in Fig. 6, where a high number of new samples
allows a higher performance in terms of PSNR. The spectral
signature extracted from the ground truth SI and its recon-
structions shows that the training with the LD SI images
achieves a density more similar to the ground truth data.
The results suggest that the models trained with the syn-
thetic samples from the proposed dataset have higher re-
construction quality in each task.
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6.6. Statistical Regularization Experiments

To validate the effectiveness of the proposed regularized
training in the AE and GAN, we perform a hyperparameter
study of the regularization parameters figqyn and fiq.. The
parameters fige = figan = {0,1e™?,1e73} were changed
for each task. The augmented SI dataset was 100% of the
original dataset. Fig. 7 shows the performance of the men-
tioned experiment. The highest performance in each task
is obtained at higher regularization parameters showing the
effectiveness of this training method.

To visualize the effect of maximizing the variance of the
generated LD representation in the GAN training, in Fig. 8,
the three first principal components of 3000 synthesized SIs
were computed for the non-regularized GAN and the pro-
posed LD-GAN with piqe = figan = 0.001 showing that
the last one has more variability than the first one.

6.7. Comparison with traditional DA techniques

We compared the performance of the proposed method
against the traditional DA consisting of rotations (rot), and
vertical and horizontal flip (VFlip and HFlip), respectively,
obtaining the same number of samples for each experiment
reported in Table 2. The results obtained show the efficacy
of the proposed method compared with the S-GAN and only
geometric DA approaches. Additionally, the performance
with the geometric DA achieves similar performance to the
same experiments without this DA strategy, indicating that
is not always helpful to use geometric DA.

7. Conclusion and Future Work

We proposed LD-GAN, a method that allows the gener-
ation of SIs through a GAN. To deal with the challenging
issue of synthesizing the high-dimensional SI, we propose
to train the GAN with an LD representation of a SI dataset

- CSI RGB to spectral SISR

Method | Geometric DA ‘ PSNR [dB]  SSIM ‘ PSNR [dB] SSIM | PSNR [dB] SSIM
Bascline X 2075 0827 | 3701 0982 | 3614 0957
) v 3096 0.858 | 36.89 0981 | 3513 0951
S.GAN X 3046 0851 | 3698 0981 | 3572 0954
3 v 30.15 0843 | 27.00 0925 | 3543 0950
X 3151 0874 | 3738 0978 | 3610 0957

LD-GAN ‘ v ‘ 3174 0.880 ‘ 3749 0984 ‘ 3638  0.958

Table 2. Comparison of performance for the SI computational
tasks of the models trained with geometric DA and the GAN-based
methods. The highlighted green values are the best performance
and the blue ones are the second best

obtained via the latent space of an AE. Then the generative
model synthesizes new LD samples mapped to the high-
dimensional spectral image space with a decoder network.
This approach significantly improves the convergence of the
GAN. Moreover, a regularization based on data variability
was proposed to optimally train the AE and GAN. We val-
idate the proposed SI generation model as a DA strategy
for some DL-based SI applications, such as CSI recovery,
SISR, and SI recovery from RGB images, where an im-
provement is achieved from 0.5 to 1 dB. As future studies,
improved performance of the LD-GAN can be obtained via
a conditional generation [21], using, for instance, RGB im-
ages to guide the generation process. Training GAN with
LD representation of the data can also be applied to other
types of high-dimensional data such as video, polarized im-
ages, and 3D images for medical applications.

Additionally, VAE can also be included instead of the
AE, where the LD dataset employed to train the generative
network is obtained from sampling the latent distribution of
the VAE. Also, beyond GAN-based models, our method
can be extended to state-of-the-art approaches based on dif-
fusion probabilistic models (DPM). Some DPM generative
approach employ LD representation from a VAE to condi-
tion the generation towards meaningful latent representa-
tion [34]. Different from this approach, the extension of our
method to DPM aims to perform the corrupting process and
the denoising of the inverse process over the LD represen-
tations of the dataset, and then, decode the generated image
to obtain the desired synthetic data.
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