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Abstract

Endoscopy is the most widely imaging technique used for
the diagnosis of cancerous lesions in hollow organs. How-
ever, endoscopic images are often affected by illumination
artefacts: image parts may be over- or underexposed ac-
cording to the light source pose and the tissue orientation.
These artifacts have a strong negative impact on the per-
formance of computer vision or artificial intelligence based
diagnosis tools. Although endoscopic image enhancement
methods are greatly required, little effort has been devoted
to over- and underexposure enhancement in real-time. This
contribution presents an extension to the objective function
of LMSPEC, a method originally introduced to enhance
images from natural scenes. It is used here for the expo-
sure correction in endoscopic imaging and the preserva-
tion of structural information. To the best of our knowl-
edge, this contribution is the first one that addresses the
enhancement of both types of endoscopic artefacts (under-
and over-exposure) using deep learning methods. Tested
on the Endo4IE dataset, the proposed implementation has
yielded a significant improvement over LMSPEC reaching
a SSIM increase of 4.40% and 4.21% for over- and under-
exposed images, respectively.

1. Introduction
Endoscopy plays a central role in minimally invasive

surgery or for carrying out examinations in hollow organs,
such as colon or stomach. In recent years, computer aided
endoscopy has become an important area of research. In
particular, Computer Vision (CV) has the potential of be-
coming an essential tool for assisting endoscopists in vari-
ous tasks [1–3].

However, a major hurdle that most of these CV methods
must face is related to the uncontrolled and highly chang-
ing illumination conditions in endoscopic scenes. Figure 1
shows two colonoscopic images in which strong illumina-

Figure 1. Strong illumination change example in almost consecu-
tive frames of a colonoscopic image sequence

tion changes are visible.
The results obtained by numerous methods in the EAD

challenge have shown that image enhancement (IE) algo-
rithms are of high interest for improving the robustness and
generalization capabilities of endoscopic image preprocess-
ing techniques. This contribution focuses on the exposure
correction in white light endoscopy. It is noticeable that this
issue has only been partially addressed in the IE field, as
most methods (see [4]) were dedicated to the correction of
either over- or underexposed images, but did not deal with
both effects occurring concurrently.

Garcı́a-Vega et al. proposed a paired “normal-exposed”
image dataset [5,6] to assess the ability of machine learning
(ML) based methods to correct the effects of non-optimal
lighting conditions. However, the need for both accurate
and real-time IE techniques highlighted the shortcomings
of most current methods. Nonetheless, the LMSPEC deep
learning (DL) method proposed by Afifi et al. [4] outper-
formed other models in terms of accuracy and inference
time, whilst obtaining a satisfactory enhancement perfor-
mance. However, in some images, LMPSEC introduced
undesired textural and color artifacts, which could lead, for
instance, to false diagnoses in endoscopy or errors in auto-
mated methods.

This contribution shows how to alleviate the loss of tex-
ture and color information during the exposure correction
process by introducing a structural similarity-aware exten-



sion to the overall loss function of the LMSPEC pipeline.
This modification allows to preserve fine-textured details.
The results show that is possible to achieve this goal both
for over- and underexposures, while maintaining a relatively
low inference time.

The rest of the paper is organized as follows. Section 2
gives an overview of the works relating to endoscopic im-
age enhancement. Section 3 discusses the dataset used to
perform the experiments presented in this contribution, as
well as the metrics used to evaluate the performance of the
solution introduced in Sections 4 (DL-model) and 5 (DL-
model tuning). Section 6 gives, through a set of ablation
studies, quantitative and qualitative comparisons between
the different configurations of the proposed DL-model. Fi-
nally, Section 7 globally discusses the results and outlines
perspectives.

2. State of the art
In the past, IE methods based on different approaches

have been proposed, such as methods using histogram
equalization [7] or Retinex theory-based models [8]. More
recently, frameworks based on ML models have emerged.
In these approaches, the IE mapping is learned instead of
computed, and DL models have excelled at this task since
its inception. Although these DL-methods have shown great
promise, they still suffer from various shortcomings. First
and foremost, most of the methods in the existing litera-
ture can enhance only over- or underexposed images, but
cannot simultaneously perform both tasks with efficiency.
Thus, [9], [8] and [10] are examples of methods that can be
successfully applied in underexposed images, taking advan-
tage of DL networks and the Retinex assumption. Nonethe-
less, some recent methods have been proposed to address
the enhancement of both over- and underexposed images
with inference times which are near to real-time.

In a prospective study, Garcia-Vega et al. [5] com-
pared various image enhancement methods, using a recent
dataset containing synthetically generated over- and under-
exposed endoscopic frames which are paired with their non-
corrupted ground truth image. The authors assessed the ca-
pabilities of different IE methods to enhance the quality of
endoscopic images, while maintaining a high degree of fi-
delity. To do so, the texture quality was quantified in terms
of peak signal to noise ratio (PSNR) and structural simi-
larity index measure (SSIM), as well as subjectively graded
by human evaluator. The inference times of each model was
also measured. In this study, LMSPEC demonstrated an as-
tounding performance for both types of exposure artifacts,
while attaining an almost real-time performance. However,
the IE-model introduced, on the one hand, some artifacts
that removed high frequency content (texture details) from
the enhanced images, and led, on the other hand, on other
undesired color artifacts.

3. Materials
3.1. Dataset

The dataset used in this contribution is a combination
of three different existing datasets (EAD [11], EDD [12]
and HyperKVisir [13]) using the procedure described in
[5]. The authors used image-to-image translation to take
unmodified endoscopic frames and generated frames with
over- and underexposure artefacts. For implementing this
task, they used CycleGAN architecture [14] since the main
issue to tackle was the lack of paired data (CycleGAN is an
efficient method for working with unpaired data).

This dataset is composed of three different types of im-
ages: i) 2,216 unmodified (acquired) endoscopic frames
(without exposure errors) that act as ground truth data, ii)
1,231 synthetically overexposed frames, and iii) 985 syn-
thetically underexposed frames. Every ground truth image
in sub-dataset 1 is associated with its either over- or under-
exposed synthetic version, belonging to sub-datasets 2 and
3, respectively. Both paired sub-datasets (sub-datasets 1+2
and sub-dataset 1+3) were split as follows: 70% , 27% and
3% of the images were used for the train, test, and validation
steps, respectively.

3.2. Metrics

Two standard full-reference metrics were used to com-
pare different IE methods: PSNR and SSIM. Both metrics
can evaluate globally over the image the quality of the ob-
tained results.

4. Proposed DL Method
Given a poorly exposed input image I acquired under

white light, the proposed method (depicted in Figure 2)
aims to predict an output image Y being a version of I with
no exposure errors. As in LMSPEC, the color and detail
errors of I are sequentially corrected. Basically, a multi-
resolution representation of I is given by a pyramidal Lapla-
cian decomposition derived from a pyramidal Gaussian de-
composition of ground truth T.

The heart of the method is based on the original imple-
mentation of LMSPEC, which randomly extracts n small
patches I ′1, ..., I

′
n from I and decomposes each patch into

two components: i) a four-level Gaussian Pyramid (GP) and
then ii) a four-level Laplacian Pyramid (LP). This LP can
be seen as a set of frames with different frequency levels,
LP = {l1, l2, l3, l4}, where l1 and l4 contain the high- and
low frequency components, respectively. This LP decom-
position is carried out to feed four U-Net-like sub-nets in a
cascade configuration with sub-images with different levels
of detail. Each sub-net is used to extract relevant features
from the image and to carry out a reconstruction of each li
input in reverse order, as shown in the LMSPEC block in
Fig. 2.



Figure 2. DL-mode. On the left: Laplacian pyramid decomposition over patches I’ with exposure artefacts and Gaussian pyramid decom-
position over ground truth patches T. On the right: Lpyr is computed with the up-sampled output from sub-networks 1,2 and 3, whereas
Lrec, LSSIM and Ladv are computed with the final up-sampled output Y from the sub-network 4. In addition, when the discriminator
network is enabled, it is simultaneously trained with the final output and its respective ground truth.

Processing input image I in this manner permits to inde-
pendently deal with each sub-net output and compute Pyra-
mid Loss Lpyr. This loss is the weighted sum of the four
L1 losses, one for each last three LP level predictions. Thus,
in order to compute Lpyr, the target for each level is given
by the Gaussian pyramid GP of the patch extracted from
ground truth T . For GP = {g1, g2, g3, g4}, Lpyr is com-
puted as follows:

Lpyr =

4∑
i=2

2i−2L1(gi, l̂i) (1)

The value of Lrec is also based on the L1 loss, which
measures the pixel-wise error between the prediction and
the ground truth patches Tj as shown in (2), where j is the
j-th patch extracted from the frame.

Lrec = L1(Tj , Yj) (2)

The last sub-net makes the final prediction Yj , which is
used to compute three of the losses: i) a Reconstruction
Loss Lrec ii) an Adversarial Loss Ladv and iii) a Structural
Similarity Loss LSSIM . In [15], Shao et al. combined the
L1 and LSSIM losses to improve the enhancement results
in comparison to a single use of the L1 loss. As discussed
above, both the Lpyr and Lrec losses are based on L1 and
thus, by adding the LSSIM loss (see Eq. 3) to the over-
all training objective, enforces the model to learns from the
pixel distribution in the ground truth patch, thus leading to a
model with more consistent outputs without increasing the
inference time of the method. The attractive characteristic
of SSIM loss is the fact that it has been proved to be success-
ful when dealing with complex illumination changes [16].
This fact enabled the proposed approach to improve the re-
sults of the original LMSPEC implementation.

LSSIM = (1− SSIM(Tj , Yj))/2 (3)

For preserving realism, LMSPEC integrates a discrimi-
nator, which takes Y as input and returns a scalar score that
indicates how realistic the image looks like. This block is
trained along the main network and is used for computing
an adversarial loss Ladv shown in (4).

In this contribution, the loss function for optimizing the
discriminator:

Ladv = −3hwn log(S(D(Yj))), (4)

where n is the number of pyramid levels (4 in this paper)
and S(D(Yj)) is the sigmoid function applied to the D value
of the final prediction or the generated image. The complete
loss function is then computed as follows:

L = αLpyr + βLrec + γLSSIM + δLadv, (5)

where, α, β, γ and δ are regularization weights. Figure 2
shows how each single loss was computed through out the
entire pipeline.

5. Experimental Setup and Model tuning
The DL-model parameter tuning was carried out as fol-

lows. First, an ablation study was carried out to deter-
mine the appropriate values of the regularization parame-
ters (α, β, δ and γ). Then, we fine-tuned the best of these
configurations. Furthermore, a three-fold training stage
was performed with a single underexposed (UE) dataset,
a single overexposed (OE) dataset, and a combined over-
underexposed (C) dataset (as in [4]). The best model from
the ablation study was given by following parameter con-
figuration: α = β = δ = 0.25 and γ = 1.0. This setting
gives a strong importance to the SSIM term, which allows
to preserve texture details. Moreover, this model (Baseline)
and LMSPEC were initially trained with original hyper-
parameters as shown in upper part of Table 1. Since the



Table 1. Hyper-parameter configurations. Phase 1 (128 pixels
patches) in white rows, phase 2 (256 pixels patches) in gray.

Method Training Set Epochs DSE BS lrG lrD

LMSPEC [4] 40 - 32 10−4 10−5

LMSPEC+ UE, OE, C 30 15 8 10−4 10−5

50 - 32 10−4 10−5

UE 40 20 8 10−4 10−5

40 - 64 2× 10−4 2× 10−5

OE 30 15 32 2× 10−4 2× 10−5

50 - 32 10−4 10−5

Best models*

C 40 20 8 10−4 10−5

*Fine-tuned models for each sub-dataset. DSE: discriminator starting epoch.
BS: batch size. lr: learning rate.

input type used in this contribution is different from the one
in the original implementation, the hyper-parameters were
tuned to maximize the performance on each training sub-
dataset (UE, OE and C). The best hyper-parameters after
training with each sub-dataset yielded three fine-tuned sep-
arated models, as seen in the lower part of Table 1. It is
worth noticing that each training was done in two phases
as follows: first the trained used 128 pixel square patches,
then the weights were transferred as initialization of the sec-
ond training phase with 256 pixel patches. For this second
training phase, the discriminator was enabled at certain dis-
criminator starting epoch (DSE) specified in configurations
in Table 1, thus turning the network into a GAN-like archi-
tecture.

6. Results and Discussion

6.1. Quantitative Results

Table 2 summarizes the results for the inference phase
for each exposure type, i.e., the UE and OE models were
tested in over- and underexposure patch sets respectively,
whereas the model C was tested over both (separated) test
sets.

The results of the proposed model are compared with
those of the baseline LMSPEC model. Table 2 shows that
the proposed method outperforms LMSPEC best model (ei-
ther for separated sets or combined) outperforms LMSPEC
in terms of SSIM by 4.40% and 4.21% for over- and un-
derexposed images, respectively. Therefore, also note that
best performance of our proposed method was given by
training our proposed model plus fine-tuning with separated
datasets.

6.2. Qualitative Results

Figure 3 shows a qualitative comparison for a couple of
frames from the Endo4IE [6] dataset. From the zoomed ar-
eas in the third and fourth columns (images enhanced by
LMSPEC and the proposed method, respectively) it can
be observed that the proposed method is able to produce a

Table 2. Quantitative results on th Endo4IE dataset [5]. White
rows: independent-data training. Light gray: combined-data train-
ing as in [4]. Highest criterion values are in bold.

Overexposure Underexposure

Method PSNR↑ SSIM↑ PSNR↑ SSIM↑
21.846 0.744 24.204 0.757LMSPEC [4] 22.286 0.772 23.064 0.760

22.633 0.799 23.720 0.783Baseline 22.442 0.795 22.877 0.786

23.139 0.806 24.201 0.792Baseline* 22.704 0.801 23.229 0.786
*Proposed model + fine-tuned model.

Figure 3. Visual assessment of the exposure correction and struc-
ture preservation. The structural enhancement is perceptible in the
zoomed areas. The complete images include less artifacts.

much more reliable prediction in comparison to the ground
truth (first column), both for over- and underexposed frames
(second column). However, a slight change in hue is intro-
duced by both methods.

7. Conclusions and Future Work

It was shown that the proposed extension of LMSPEC, in
the form of an extra loss term for preserving texture details
in exposure corrected images has yielded satisfactory re-
sults in the Endo4IE dataset: the experiments show a boost
in terms of quantitative metrics, and a qualitative assess-
ment has shown that the method produces more realistic
images. However, some improvements are still possible:
i) although the model makes use of 7 million parameters,
we have been able to attain only a 8 FPS throughput (high
inference time), and ii) the model sometimes produces im-
ages with a slight shift in hue. The last issue can probably
be addressed by enforcing color preservation via an addi-
tional loss, while the former issue requires improvements in
the model design.
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