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Abstract

This work presents the design, implementation and eval-
uation of a virtual reality (VR) environment controlled us-
ing a Motor Imagery (MI) based Brain Computer Interface
(BCI). BCIs enhance the effective communication and in-
teraction between humans and computers. Such systems
are increasingly prevalent in diverse applications, includ-
ing education, entertainment, and health. The aim of this
system is to create a rehabilitation environment for upper
limb motor recovery, in the form of a VR game. In the
system, the user performs left and right arm MI, detected
using machine learning algorithms to perform an ability
within the virtual environment. The system was evaluated
with five healthy participants in one experimental session
each. Each experimental session consisted of a training and
an evaluation routine, in which the participants were asked
to imagine each MI task randomly to gather training data
and then, with the trained classification algorithm, the users
were evaluated by playing the game, needing to perform the
correct ability to attack each enemy. The 3-class classifi-
cation algorithms showed a ranged accuracy of 39.6% to
68.6%, with an average of 54.3%; the evaluation accuracy
ranged from 46.2% to 76.9%, with an average of 59.2%.

1. Introduction
Neurodegenerative diseases, stroke, and spinal cord in-

jury are the major causes of motor paralysis in adults and
the elderly. Patients with these afflictions have severely im-
paired mobility and require assistance with daily activities
such as eating, dressing, grabbing objects, and communi-
cating. Due to the challenges these people face, there is a
growing interest in developing novel technology-driven so-
lutions to restore and recover mobility, as well as a need for
innovative rehabilitation programs. Brain-Computer Inter-
face (BCI) and virtual reality (VR) technologies are a new
and compelling approach for neurorehabilitation on patients
with motor loss.

A BCI is a system that allows communication between
the brain and a computer or other external device [8]. Us-
ing BCIs is especially helpful for identifying motor com-
mands via Electroencephalography (EEG). Some neurode-
generative affections, such as ALS, affect mainly superior
and inferior motor neurons [15], meaning that the patient is
unable to execute a movement but the brain keeps generat-
ing motor signals. This allows to identify movement com-
mands using EEG, regardless of the ability of the patient to
execute the motion. BCIs have long been used for neurore-
habilitation, not only to aid movement but also to improve
communication and for neuro-modulation [17].

In recent years the understanding and applications of
BCIs have broadened, allowing users to control spellers,
robots, drones, or wheelchairs [3]. EEG-based BCIs are
mostly developed using visually evoked potentials, slow
cortical potentials, event-related potentials, and sensorimo-
tor rhythms. The last provides high degrees of freedom,
potentially offering physical interaction for patients with
motor loss, being an alternative to bodily motor pathways
[7]. Sensorimotor rhythms are also easily detected in both
healthy and disabled users. There are different methods
used to analyze and process EEG data for BCI applications,
two of the most common are P300 [4] and MI. In the MI
paradigm, the user generates induced activity from the mo-
tor cortex while imagining they are performing a movement
without doing it [19].

VR has been shown to have beneficial neurobiological
effects. Georgiev et al. [6] demonstrated promising re-
sults in the use of VR for neurorehabilitation, describing
increased cortical gray matter volumes in patients, a higher
concentration of beta-waves in EEG readings, and enhanced
cognitive performance. VR is regarded as a safe and con-
trolled environment for rehabilitation activities [1], while
also motivating patients complete rehabilitation in an en-
joyable environment.

Both of these technologies have been extensively ex-
plored in recent years, and recently there has been an inter-
est in combining BCIs with VR. Using BCIs can improve



communication channels between the user and the virtual
world, enhancing immersion and interaction [13]. Different
clinical trials have been conducted for the use of BCI-VR
technologies, showing promising results for rehabilitating
patients with motor loss [8]. Integrating VR and BCIs in-
volves the design of a system with immersive 3D graphics
and feedback as well as a classification algorithm that is
quick and accurate, allowing real-time interaction using the
BCI, and being more intuitive than traditional VR controls
[10].In a prior study involving VR and MI, users navigated
a maze by imagining left or right movement [14]. Ten of the
eleven participants achieved online performance superior to
chance, and the majority of test subjects completed more
than 70% of the tasks. Ferrero et al. [5] investigated the im-
pact of using VR for MI improvement, analysing whether
MI gait can be improved when subjects receive VR feed-
back rather than feedback from a screen. Visual feedback
from VR was related to higher performances in the majority
of cases.

In this work, we present the implementation and val-
idation of a VR environment controlled by a BCI using
the Motor Imagery paradigm. The BCI controls a char-
acter’s movement within the VR environment, focusing on
two movements: right-arm and left-arm movement. These
movements prompt an animation and a special ability within
the environment to attack a random enemy. The virtual en-
vironment was created in Unreal Engine and implemented
on a Meta Quest 2 headset.

2. System Description
The developed system consists of a VR environment, a

BCI based on Motor Imagery, and an EEG biosignal am-
plifier. Figure 1 depicts the system, including the setup di-
agram and communication lines between each component.
The objective is to use the MI BCI to create a rehabilita-
tion environment for upper-limb movement. The BCI and
the VR environment communicate with json formatted mes-
sages sent via the User Datagram Protocol (UDP) commu-
nication protocol. The user manipulates a set of virtual arms
inside the VR environment using this communication, al-
lowing for immersive control during the game. The game is
divided into two levels: training and evaluation, which are
described in the following sections.

2.1. MI-based BCI
The BCI receives EEG signals directly from the am-

plifier. The EEG recording system (g.LADYbird active
wet electrode arrangement and a g.USBamp amplier from
g.tec medical engineering GmbH, Austria) consists of eight
monopolar electrodes placed following the 10-20 system at
positions FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3,
Pz, and P4. These electrodes were chosen because they are
located over the left and right motor cortex. The ground

Figure 1. Set up diagram of the proposed VR-BCI system.

electrode was located at AFz, and the reference electrode
on the left earlobe. The sampling rate was 256 Hz.

The BCI first needs to be calibrated to recognize be-
tween left, right and rest using a machine learning model.
The model consists of a filter bank common spacial patter
(FBCSP) feature extraction algorithm and a regularized lin-
ear discriminant analyzer (RLDA) classifier. After the cali-
bration, the system can be used in a real-time experimental
evaluation. These two steps are done during the training and
evaluation levels respectively.

The EEG data goes through a processing sequence to dif-
ferentiate between the MI tasks. The data is divided into
1.5-second EEG epochs. The pre-processing and feature ex-
traction stages are applied on this epoch. The classifica-
tion model then evaluates the features and labels the epoch
class. There are three classes: left arm, right arm, and rest.
An additional artifact class allows the system to identify a
noisy EEG epoch. If a class is determined, the BCI sends
a message with the corresponding movement to the virtual
environment. The processing sequence was based on the
classification approach presented in [11].

To distinguish between the three classes, the feature ex-
traction stage employs the FBCSP algorithm. This algo-
rithm to computes the best spatial filters for extracting use-
ful features from EEG signals. This method is widely
used to decode diverse motor-related tasks from EEG data
[16, 21]. The feature extraction process consists of three
sequential steps: a) selecting a filter bank for multiple fre-
quency bands, b) using CSP to perform spatial filtering in
each frequency band, and c) feature selection. This feature
extraction procedure was applied independently to the bi-
nary conditions rest vs left, rest vs right, and left vs right.

The classification model was applied to the EEG epochs
that passed an artifact rejection stage. The model is based
on RLDA [2, 9], a popular algorithm for MI-based BCI
applications [12, 18]. The RLDA algorithm was imple-
mented as a multiclass model with a one versus one voting
scheme. The model is used with automatically regularized
covariance, so hyper-parameter tuning is unnecessary. To
solve the multiclass problem, the model was trained with a
K(K − 1)/2 binary classifier.



Table 1. Characteristics of the two game levels of the virtual envi-
ronment.

Game Levels

Training Level Evaluation Level

System trains classification algorithm User performs online evaluation
User follows instructions Users decides which movement to choose

Fixed duration Fixed number of trials
No evaluation User is evaluated right or wrong

2.2. Virtual Environment & Game Levels
The virtual environment and game levels were developed

using Unreal Engine and the Meta Quest 2 headset. The
game was divided into two levels, the Training Level and
the Evaluation Level. In the first one, the user would cal-
ibrate the BCI for left, right or rest classification. In the
second, the user would use the calibrated system to run an
online evaluation and test their performance by imagining
either right or left depending on what the virtual environ-
ment showed the user. The main differences of each level
are shown in table 1. The game consists on attacking two
different enemies, each is attacked with an ability assigned
to the movement of the arms, the assigned abilities and en-
emy interactions are described on figure 2.

Figure 2. In-Game interactions between the user and the enemies.
Left movement triggers a fire ability, right movement triggers an
ice ability. The user attacks the enemies with these abilities; fire
defeats the ice enemy and ice defeats the fire enemy.

The training level consists of a calibration routine in
which the system randomly asks the user to imagine ei-
ther left or right arm movement for 12 seconds in order to
collect the training dataset. The routine lasts approximately
8 minutes and consists of 24 trials, 12 left and 12 right.
The collected data is then sent into the processing pipeline.
Finally, we obtain the accuracy score of each class by per-
forming a five-fold cross validation. Based on these results,
the calibration is used or discarded, depending on whether
the classes are balanced and the accuracy is greater than ran-
dom chance (accuracy > 33%). During the training level,
the user begins to associate the imagined movement, the as-
signed ability, and the corresponding enemy to attack with
each ability.

In the evaluation level, the trained algorithm to classi-
fies the EEG signals in real time. If the BCI detects a MI
task in less than 12 seconds, it sends a message to the vir-
tual environment to perform the corresponding ability. The

Figure 3. Experimental setup, user P3 during training level.

evaluation routine has a maximum duration of 11 minutes
and consists of 26 trials, 13 left and 13 right randomly se-
lected. In game, enemies are spawned one by one in front
of the user, and the user must decide which movement to
imagine to correctly attack the enemy. During the evalua-
tion, the user has three options: attack with fire (left class),
attack ice (right class), or do not attack (rest class). The
goal of the evaluation is to test both the user and the BCI
classifier, so the system records correctly and incorrectly
classified movements.

3. System Validation
3.1. Experiment Description

Experiments were conducted in a closed space with five
healthy subjects to assess the performance and usability of
the VR-BCI system. Participants sat in front of a desk,
wearing the Meta Quest 2 headset and the EEG electrode
cap, resting their arms on their legs. Initially, participants
were given instructions on how to complete the MI tasks,
and they were asked to avoid unnecessary movements while
focusing on the interface. The EEG electrodes were con-
nected to an amplifier, which in turn was connected to a
laptop computer running the BCI.

The experimental task consisted of imagining raising ei-
ther the right or left arm in response to visual and audio
cues displayed in the virtual environment. An experimen-
tal session was divided into two stages: training level and
evaluation level, completed one after the other. Figure 3
presents the experimental setup.

3.2. Participants
This study recruited the participation of five healthy in-

dividuals. The group consisted of three females and two
males aged 20 to 24 (24, 24, 22, 22, 20 from P1 to P5).
Four participants were right-handed, and one (P3) was left-
handed, with normal or corrected vision and no prior expe-
rience with EEG recordings or BCI-related experiments.

All participants volunteered for the study and provided
informed consent before the experimental session. This
study followed the ethical principles of the World Medical
Association (WMA) Declaration of Helsinki [20].



Table 2. Online evaluation performance of the five subjects and the overall average. For evaluation performance we reported the number
of correctly classified trials (Succ. trials) and the rate (accev) between the successful trials and the total trials conducted per session (26
trials, 13 left and 13 right).

Left MI Right MI Evaluation
Participant Succ. Trials (#) Accuracy (%) Succ. Trials (#) Accuracy (%) Total Accuracy (%)

P1 4 30.8% 10 76.9% 53.8%
P2 4 30.8% 12 92.3% 61.5%
P3 13 100.0% 7 53.8% 76.9%
P4 10 76.9% 5 38.5% 57.7%
P5 8 61.5% 4 30.8% 46.2%

Average 7.8 60.0% 7.6 58.5% 59.2%

3.3. Data Analysis
To assess the accuracy of the machine learning model

trained by the BCI for each participant, we used five-fold
cross-validation on the training data. In this study, the accu-
racy of each classifier trained in the one versus one strategy
was reported, and the overall accuracy was calculated as the
mean of the three class accuracies.

The performance of the online BCI system was measured
with the evaluation level, in terms of percentage of success-
ful detection of the requested MI task. The accuracy in the
online evaluation (accev) was computed as:

accev =
nsel

natt
× 100% (1)

where natt is the total MI tasks (13 left, 13 right and
26 overall) and nsel is the number of successful detections.
This was computed for both, left and right trials, and for the
total trials.

4. Results and discussion
4.1. Classification Model Evaluation

Table 3 shows the training accuracies estimated with the
five-fold cross-validation for each participant, along with
the average results of the five participants. The mean accu-
racy for the left class was 58.5%, 58.2% for the right class,
46.1% for the rest class, and 54.3% overall. P3 had the
highest classification accuracy, with 68.6%.

We observe that the left and right classes are balanced
on average, and that the results obtained were sufficient to
carry out the evaluation routine in all cases. The accuracy
calculated was greater than chance for all subjects, in both
overall accuracy and class accuracy results. Implying that
the three-class classification paradigm used in training was
able to differentiate between the MI tasks.

4.2. Online BCI Evaluation
Table 2 summarizes the evaluation level results. P3 and

P4 obtained accuracies above 76% for the Left MI, which is
more than 10 trials correctly classified. P1 and P2 had accu-
racies higher than 76% for the Right MI. The mean accuracy

Table 3. Classification accuracies of the three tasks (Left, Right
and Rest) and model accuracy (mean value).

Participant Left Class (%) Right Class (%) Rest Class (%) Mean (%)

P1 52.5% 53.3% 13.0% 39.6%
P2 64.1% 55.1% 50.0% 56.4%
P3 75.2% 68.6% 61.9% 68.6%
P4 56.7% 68.3% 70.8% 65.3%
P5 44.2% 45.8% 34.8% 41.6%

Average 58.5% 58.2% 46.1% 54.3%

for Left MI was 60%, and 58.5% for Right MI was, equiv-
alent to nearly 8 correct trials. P3 had the highest classifi-
cation accuracy with 76.9% overall, with 20 out of 26 trials
correctly classified and a 100% accuracy performance for
Left MI. More than half of the evaluation trials are correctly
classified according to the overall performance.

Seemingly, users perform better with one movement than
the other. P1 and P2 performed better on Right, with 76.9%
and 92.3% accuracy, compared to 30.8% on Left. Both of
these participants were right handed. P4 and P5, also right
handed, achieved better results for Left, with 76.9% and
61.5% accuracy, compared to 38.5% and 30.8% for Right.
There is no discernible correlation between the dominant
hand and better performance on the MI task, more testing
is required to reach accurate conclusions. Users were able
to control both virtual movements and correctly attack the
spawned enemies in at least half of the trials.

5. Conclusion
The system was proved able to perform the Motor Im-

agery task for people with no prior experience with BCIs
or VR, properly classifying between left and right arm MI
in more than half of the trials. More experimentation is re-
quired to achieve higher accuracy results so that the sys-
tem can have a greater impact on upper limb rehabilitation.
Future work will include testing the system with more par-
ticipants and in multiple sessions to see if the user’s per-
formance can improve over time and determining whether
a change in the processing pipeline is required to achieve
better results.
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