
Difficulty Estimation with Action Scores for Computer Vision Tasks

Octavio Arriaga1, Sebastian Palacio2, Matias Valdenegro-Toro3

1University of Bremen, 2German Research Center for Artificial Intelligence, 3University of Groningen
arriagac@uni-bremen.de, sebastian.palacio@dfki.de, m.a.valdenegro.toro@rug.nl

Abstract

As more machine learning models are now being applied
in real world scenarios it has become crucial to evaluate
their difficulties and biases. In this paper we present an un-
supervised method for calculating a difficulty score based
on the accumulated loss per epoch. Our proposed method
does not require any modification to the model, neither any
external supervision, and it can be easily applied to a wide
range of machine learning tasks. We provide results for the
tasks of image classification, image segmentation, and ob-
ject detection. We compare our score against similar met-
rics and provide theoretical and empirical evidence of their
difference. Furthermore, we show applications of our pro-
posed score for detecting incorrect labels, and test for pos-
sible biases.

1. Introduction
Current state-of-the-art algorithms in machine learn-

ing rely on the use of overparametrized models such as
deep neural networks (DNNs). These architectures con-
tain sufficient structural priors to reduce the solution space
to a computable and generalizable one, but not restricted
enough to prevent them from learning unstructured data nu-
ances [19, 24] and surface statistics imperceptible to hu-
mans [8, 13]. Moreover, as these models are now being de-
ployed into real world scenarios, it has become critical to
create a systematic evaluation of their performance that can
discover these unwarranted properties. This is particularly
complicated due to the vast amount of samples required to
optimize current machine learning models.

Entropy is a useful metric that provides additional pre-
dictive information about the uncertainty of individual sam-
ples. However, we provide evidence suggesting that entropy
does not provide all relevant dimensions required to asses
incorrect samples or possible biases. Furthermore, current
state-of-the-art DNNs have been shown to predict uncali-
brated confidences [9]. This limitation has called for better
uncertainty prediction techniques. However, these methods
can become computationally expensive since they often re-

(a) Cat 143 (b) Frog 140 (c) Dog 134 (d) Cat 134 (e) Bird 131

(f) Frog 130 (g) Deer 130 (h) Bird 126 (i) Dog 126 (j) Auto 126

(k) Plane125 (l) Ship 125 (m) Bird 123 (n) Bird 118 (o) Dog 116

(p) Bird 116 (q) Cat 114 (r) Bird 114

Figure 1. Hardest samples in the CIFAR10 test split using a
ResNet architecture. Each subcaption shows the true label and the
computed action score of that sample. This exemplifies how the
action score measures learning difficulty, as these images are all
in uncommon object poses, show ambiguous objects, or are mis-
labeled samples (e.g d and p).

quire model ensembles or multiple forward passes [10]. Ad-
ditional metrics have been defined in the literature, but they
have been only applied either to small datasets or are re-
stricted to a single task [1, 3]. Furthermore, they have not
presented a principled definition based on desired proper-
ties, but rather have relied on hypotheses specific to gradient
descent methods.

In this work we provide a formal definition of difficulty
based on a variational principle. In the context of machine
learning this implies that samples that do not conform to
the optimization dynamics must be considered unnatural or
difficult. We show that our method can provide machine
learning researchers and engineers with an additional tool
that inspects incongruous samples and biases in datasets and
models.

We summarize our contributions as follows: We present

a computational method based on the physical quantity Ac-
tion (A) that determines how difficult it was to learn a sam-
ple. We provide an information theoretic formulation in or-
der to understand its differences to other known quantities
such as information gain and entropy. We provide experi-
mental results in multiple supervised and unsupervised ma-
chine learning tasks such as image classification, object de-
tection, image segmentation and dimensionality reduction.
Finally, we apply our method as a human auditing tool to
inspect incorrectly labeled samples and possible biases in a
model.

2. Related work

Per-sample metrics have been proposed in order to char-
acterize the uniqueness of each sample. In [14] the input
space is represented by a small set of typical and atypical
per-class examples as means to explain a model’s general-
ization capabilities. By taking into consideration different
training dynamics (i.e., metrics that depend on the model
as it trains), [20] can split a dataset into hard- or easy-to-
learn samples, spotting OOD points, as well as identifying
mislabeled samples.

In order to tune a model’s uncertainty estimation [22]
proposes a metric for difficulty by adding an additional out-
put branch that increases the weight for samples with low
entropy, according to the original classifier. Similar archi-
tectures have been tested under the paradigm of curriculum
learning where either a teacher network adapts the impor-
tance of samples to a student model [12] or concurrently
trained networks dynamically estimate how hard a given
batch will be for the other members of the ensemble [11].
While the use of per-sample loss values is widespread in
the literature, these metrics often rely on the modification
or an addition to the original model [11, 12, 22]. Moreover
they are often formulated for an individual task such as im-
age classification [1, 3, 14]. Thus in this work we compare
our metric against the predicted entropy given it’s semantic
similarity and generic applicability to any model or task.

Furthermore, estimating the influence of difficult sam-
ples on a model’s prediction has found numerous appli-
cations in machine learning, ranging from outlier detec-
tion, to sample selection, or curriculum learning. [16] pro-
poses a method to select a subset of the dataset that maxi-
mizes the average performance of an ensemble on a binary
task. A similar study proposes several gradient-based met-
rics to quantify the number of redundant samples in a given
dataset [21].

3. Action Scores for Difficulty Estimation

We first motivate our proposed technique by observing
how the loss decreases over different samples. Most com-
mon losses take the mean per batch or display the total

0 10 20 30 40 50
Epochs

0

1

2

3

4

5

C
ro

ss
-E

n
tr

o
p
y
 L

o
ss

Figure 2. Clustering of per-sample loss curves on CIFAR10 with
Keras CNN, and three cluster centers (red, green, and blue). Each
cluster center is shown with the top three closest curves. This
diagram shows the motivation for the action score, as per-sample
loss behavior across epochs is different and measures how difficult
is each sample to be learned by the model.

mean loss of a whole data split, which can in turn over-
shadow the training dynamics. We hypothesize that easy
samples should have a fast decreasing loss, while hard sam-
ples should exhibit a slow decreasing loss or, in some cir-
cumstances, an increasing value during the optimization.

We perform a simple experiment by training a small
VGG-like network with 5 layers on CIFAR10. Using this
model we compute the loss for each sample at each epoch.
We cluster these curves using K-Means with k = 3. We
can observe in Figure 2 clustered loss curve patterns (in-
creasing, slow decrease or constant, and decrease) which
we interpret as samples having different difficulties (hard,
medium, easy).

Given our previous observations we proceed by creating
a principled definition of difficulty rather than relying on
proxy metrics. We define difficulty as the total amount of
effort required to solve a task. Within the context of ma-
chine learning we define the effort E to be proportional to
the product of the accumulated loss over a period of time
Lt and that length of time ∆t:

Et = Lt ×∆t. (1)

The correlation between loss and time in equation 1 implies
that if a loss was small but the time required to compute it
was long, then the effort must grow proportionally to that
time. Following our definition, we can formally define the
difficulty of a sample as the total effort over time 1:

A =

T∑
t=0

Et =

T∑
t=0

Lt ×∆t. (2)

1This quantity resembles the functional definition of the action in
physics. The principle of least action states that the action is stationary to a
first order. However, within our framework we have a variational principle
that states that this integral should be minimized. Given these similarities
we name our difficulty score as action (A).

In the specific case of neural networks given a loss function
L and a model m with free parameters θn, we define the
action A of a sample x ∈ X and label y ∈ Y within an
optimization step n as

A (x) =

N∑
n=0

L (y,m(x; θn))∆n. (3)

We define an optimization step to be an epoch, and the value
of that step to be equal to one. The granularity of this step is
chosen for computational convenience; however, one could
also choose a ∆t that represents difficulty at every batch
update, or even the actual processing (wall) time of a single
epoch or batch.

An additional characteristic of equation 3 is that it can
be ordered across different sets. For example, in a classi-
fication task one can compute the difficulty across classes
xc. In a segmentation task one can compute a difficulty
mask by calculating a per pixel difficulty xij , or also across
models mi. Consequently, for this specific case with neu-
ral networks, the action of a sample is the accumulated loss
over all epochs. Therefore, samples with a higher accumu-
lated loss represent samples that are more difficult to learn.
Within this framework we can also recover sample pairs that
accumulate the least amount of loss during optimization.
These samples reflect which elements are easier to learn as
well as possible biases that might be present in the model
or the dataset. We would like to emphasize that this method
can be applied to any learning algorithm that is optimized
iteratively, and is not limited to artificial neural networks
nor supervised methods. Moreover, calculating A does not
require any modification to the original model.

4. Experimental Results
We start by showing the theoretical differences between

the predicted entropy H(P (ys|xs, θ
∗)) and A . First, we

formulate the loss L as a probabilistic loss function. This
implies that L compares the predicted probability density
function against the true density function using a diver-
gence. For the specific case of the Kullback-Leibler diver-
gence (information gain) we have:

A (xs) =

N∑
n=0

DKL(P (ys|θ∗) ∥ P (ŷs|xs, θ
n))∆n, (4)

Using the relation DKL(P ∥ Q) = H(P,Q) − H(P) we
obtain:

A (xs) =

N∑
n=0

H(P (ys|θ∗), P (ŷs|xs, θ
n))∆n

−NH(P (ys|θ∗), P (ys|θ∗))∆n.

(5)

The last term to the right is often ignored from the optimiza-
tion procedure since it does not depend on any optimizable

parameters. We disregard this value because it does not de-
pend on a sample xs. Thus, the difficulty of a sample is:

A (xs) =

N∑
n=0

H(P (ys|θ∗), P (ŷs|xs, θ
n))∆n. (6)

Hence, A can be interpreted as the accumulated message
length during optimization by using the running distribution
P (ŷs|xs, θ

n). This result shows the differences between A
and entropy when using a KL divergence. From these re-
sults we can also interpret the action as the accumulated dis-
crepancy while learning. Thus, if our hypotheses are con-
stantly unable to explain our observations while learning,
we deem that concept as hard, or ourselves as incapable of
learning. In the following sections we show experimental
results on both of these possibilities.

4.1. Image classification

We test our method in the following standard classifica-
tion datasets: MNIST [6], FashionMNIST [23], Kuzushi-
jiMNIST [4], FERPlus [2] and CIFAR10 [15], using multi-
ple CNN models: ResNet, Xception and a simple VGG-like
network. In this section we will only show our results on the
ResNet models trained on CIFAR10, but all additional re-
sults can be found in the supplementary material.

At every epoch we calculate and store the loss (cross en-
tropy) of each sample in the test set. After the conclusion
of the training phase we compute the action of each sam-
ple by summing up the stored losses. In Figure 1 we dis-
play samples with the highest action scores. We observe
that our method successfully detects a mislabeled sample in
the CIFAR10 test dataset (1d). In section 4.4 we conduct a
more thorough test that measures the ability of our metric
to successfully recover mislabeled samples. Figure 4 shows
samples with the lowest action score for this experiment.
We note that those samples correspond to only automobiles
showing at least two wheels. Figure 3 shows the loss across
epochs of the top hardest samples from the same experi-
ment shown in Figure 1. We can observe that in all samples
the loss does increase throughout the optimization process,
as suggested in our original discussion shown in Figure 2.

In order to discover possible biases within our hardest
samples, we compute for each sample its closest neighbors
in feature space. These results are shown in Figure 33 (in
the appendix). Neighbors were computed for the same test
split using the L2 norm of the last feature layer before the
final prediction. For our trained ResNet model in CIFAR10
this corresponds to a 256 dimensional vector. Note that the
neighbors of all hard samples belong to the same class (ex-
cept for the query sample itself). For example, the hardest
sample on the first row corresponds to a cat lying horizon-
tally, but the neighbors are all ships. Similarly, the hard
sample on the second row is a frog while all neighbors are
airplanes.

0 2 4 6 8 10 12 14
Epoch

0

2

4

6

8

10

12

14

16
Ac

tio
n

(a) Cat 143

0 2 4 6 8 10 12 14
Epoch

0

2

4

6

8

10

12

14

16

Ac
tio

n

(b) Frog 140

0 2 4 6 8 10 12 14
Epoch

0

2

4

6

8

10

12

14

16

Ac
tio

n

(c) Dog 134

0 2 4 6 8 10 12 14
Epoch

0

2

4

6

8

10

12

14

16

Ac
tio

n

(d) Cat 134

0 2 4 6 8 10 12 14
Epoch

0

2

4

6

8

10

12

14

16

Ac
tio

n

(e) Bird 131

0 2 4 6 8 10 12 14
Epoch

0

2

4

6

8

10

12

14

16

Ac
tio

n

(f) Frog 130

Figure 3. Loss function across epochs from the top hardest samples in CIFAR10 test split using a ResNet architecture, with the true class
and its action score.

(a) Auto 0.00 (b) Auto 0.00 (c) Auto 0.00 (d) Auto 0.00 (e) Auto 0.01 (f) Auto 0.01 (g) Auto 0.01 (h) Auto 0.01 (i) Auto 0.01

Figure 4. Easiest samples in CIFAR10 test split using a ResNet architecture. Each subcaption shows the true label and the computed action
score of that sample.

Figure 6a shows the distribution of the action scores per
class. We can observe that the classes in CIFAR10 that ac-
cumulate more loss correspond to those associated with an-
imals rather than objects. Figure 6b shows the joint distri-
bution of the normalized action score and the entropy of the
whole test set. Entropy was calculated using an ensemble
of 20 ResNets, and the normalized action score was com-
puted by first taking the mean of the action scores across all
20 models and then performing a min-max normalization.
We observe that the distribution of the action score (y-axis)
exhibits a heavy tail. Furthermore, this figure shows that
the single dimension of entropy cannot cover the space of
difficult samples as defined by the proposed action score.
Figure 6c shows the accuracy of the test set with respect to
thresholded values of the normalized action score, the nor-
malized entropy and a modified version of the action score
that uses the variance across the optimization step instead of
the sum. We can observe that in all circumstances the clas-
sification accuracy decreases as lower values of our metrics
get masked out. We display both the mean and the 95%
confidence interval across all 20 models. We can observe
that the confidence interval of the entropy increases in the
last thresholds, while the interval of action scores remains
smaller, with a faster decreasing mean. In order to further
investigate the visual differences between action scores and
entropy we show in Figure 7 the samples indicated by the
green and red squares of Figure 6b. These squares represent
regions of interest: high-action low-entropy and low-action
high-entropy respectively.

4.2. Object detection

In this experiment we calculate the action score of a
multi-objective loss function used for training the single-
shot object detector SSD300 [17] on PASCAL VOC 2007

[7]. The total loss of this model consists of the combination
of three different losses: positive classification, negative
classification and bounding box regression. The samples
with the most and least localization loss are shown in Fig-
ure 8. We can observe that the most difficult samples for box
regression correspond to images that contain indistinguish-
able small objects. Moreover, easier samples for the same
loss are determined by single centered objects. Figure 9
shows the hardest positive classification loss. Within this
figures we can observe that 9a and 9b display object-classes
that are presented in non-conventional situations. In Fig-
ure 10 we observe the easiest positive samples. We see that
single centered persons and cats are easier for the model to
classify. The images for the negative classification loss are
shown in the supplementary.

4.3. Segmentation

In this section we provide results using our action score
in a new different setting. Additionally to ordering the per-
sample action scores, we can also compute a per-pixel ac-
cumulated loss:

A (xij) =

N∑
n=0

L (yij ,m(xij , θn)). (7)

This change allows us to evaluate the difficulty not only
as global property of a sample but also the local elements
within it. For this purpose we trained a U-NET architec-
ture with a VGG backbone on the CityScapes segmentation
dataset [5] using a linear combination of a dice, jaccard and
focal loss. We compute our action scores as well as our per-
pixel action scores in the CityScapes validation set. These
results can be seen in 11.

We can see in the first two rows of Figure 11 that the
most difficult samples contain large red void masks which

Hardest
sample Top-8 nearest neighbors

Figure 5. The first element of each row corresponds to one of the top five hardest samples on CIFAR10 test split with a ResNet model. The
subsequent elements in each row show the top eight neighbors of that first row element.

plane auto bird cat
deer dog frog

horse ship truck

Classes

0

10

20

30

40

50

Ac
tio

n

(a) Action per class

0.0 0.5 1.0 1.5 2.0 2.5
Entropy

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n

(b) Action vs Entropy

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Entropy
Action mean
Action variance

(c) Accuracy as function of metrics

Figure 6. Data exploration of data scores on CIFAR10. (a) shows the relative difficulty of each class, with birds and cats being the
most difficult to classify. (b) Shows the joint distribution of entropy vs action score, displaying how action and entropy measure different
properties of a prediction. (c) Shows relationship of accuracy as function of action, accuracy drops with higher action as those examples
are more difficult to learn.

the model correctly classifies as a road. The other two rows
show samples which contain multiple pedestrians. Further-
more, our per-pixel masks allows us to indicate which parts
are effectively more difficult. We can now see that in the
last two rows the regions with the most accumulated loss
are those in which the ground include vegetation and a baby
wagon is labeled as void. Additional results using our per-

pixel score for dimensionality reduction can be found in the
supplementary material.

4.4. Training on Noisy Labels

A critical problem for models trained on large supervised
datasets is the quality of the annotations. Badly annotated
samples may introduced unintended biases, and hinder the

(a) 1.9 - 0.2 (b) 0.8 - 0.1 (c) 0.8 - 0.02 (d) 0.8 - 0.9 (e) 0.8 - 0.8 (f) 0.8 - 1.0 (g) 0.8 - 0.9 (h) 0.8 - 1.3 (i) 0.8 - 0.2

(j) 0.2 - 2.1 (k) 0.3 - 2.1 (l) 0.2 - 2.0 (m) 0.4 - 2.0 (n) 0.2 - 2.0 (o) 0.3 - 2.0 (p) 0.2 - 2.0 (q) 0.3 - 2.0 (r) 0.4 - 1.9

Figure 7. Comparison of action score vs entropy. Each subcaption shows the normalized action score and the entropy of that sample in the
following format: {action-entropy}. The top row shows the mean of the normalized action samples in CIFAR10 test split using 20 ResNet
architectures. The bottom row shows the samples with the highest entropy using the same 20 models as an ensemble.

H
ar

de
st

(a) Boat 1749.3 (b) Train 496.6 (c) Car 457.1 (d) Bird 413.1 (e) Bird 385.8 (f) Plant 357.6 (g) Bottle 354.5

E
as

ie
st

(h) Person 3.9 (i) Cat 4.1 (j) Dog 4.2 (k) Cat 4.7 (l) Cat 5.0 (m) Person 5.2 (n) Person 5.3

Figure 8. Most difficult (top-row) and easiest examples (bottom-row) in the VOC 2007-VAL with the SSD localization loss. The action
scores are displayed below each image as well as the true label.

performance of a model. One of the first lines of defenses
against this issue is to detect precisely the samples that
have been mislabeled. We follow the experimental setup
from [24], assigning random labels to 10% of CIFAR10’s
training dataset. Next, a small 3-layer CNN and a ResNet
are trained for 85 epochs yielding a high training accuracy.
By plotting the distribution of the action score on the train-
ing subset that has randomly assigned labels (Figure 12), we
show that those samples are clearly differentiable (larger ac-
tion score) from correctly labeled samples used for training
(low action score), as well as samples used for validation
(i.e., not used for training).

4.5. Curriculum by Action Score

We explore the potential for using the action score as
a metric for doing dataset selection when training is con-
strained by a computational budget. Similar to [16], we are
interested in measuring the accuracy of a neural network
when training on a subset of the available data. We test
whether a subset made out of samples sorted by action score
yields a higher accuracy (on the entire test set) compared to

the best of three randomly sampled subset of the same size.
Once the training set is sorted according to the action score,
the data is split into equally sized chunks with a uniform
distribution across classes. A 3-layer CNN is then trained
(from scratch using the same initial weights) on CIFAR-10
over 15 epochs using one chunk. The chunk with the high-
est test accuracy is kept, and subsequent runs will append
one of the remaining chunk to the best performing one on
the previous iteration.

Results in Figure 13 show that using data sorted by ac-
tion score yield consistently higher accuracy on the entire
test set than a randomly selected subset. Moreover, we ob-
serve that there is a tendency to select chunks that steadily
increase the mean action score, peaking shortly before the
entire dataset is exhausted (right after chunk 19 is added to
the set). This coincides with a slower increase over the sub-
sequent improvements that additional data bring afterwards.

4.6. Comparing Model Biases

One question of broad interest in the context of difficulty
is, do different models have the same biases on the same

H
ar

de
st

(a) Cow
596

(b) Car
568

(c) Human
Horse 565

(d) Horse
544

(e) Cat
544

(f) Plant-Bottle-Horse
527

(g) Dog
24

Figure 9. Hardest Examples on PASCAL VOC 2007 with SSD validation positive loss.

E
as

ie
st

(a) Person
5.7

(b) Person
6.1

(c) Person
6.2

(d) Cat
6.2

(e) Person
6.3

(f) Cat
6.4

(g) Person
6.7

Figure 10. Easiest Examples on PASCAL VOC 2007 with SSD validation positive loss. Action score is included in each caption.

Input image Ground truth labels Predicted mask Per-pixel Action Score

Figure 11. Comparison of action score in segmentation on the Cityscapes dataset, showing the most difficult images. The first column
shows the input images, the second column the image labels, the third the predicted masks, and the last column shows our per-pixel action
score. Note similar looking regions are the most difficult to classify (road, sidewalk, and person).

dataset? Intuitively one might think that most sources of
biases come from the data (since data is selected and cap-
tured by a human), but we can use the action scores of dif-
ferent models obtained from the same dataset to approach
this question. For this experiment, we compare the correla-
tion of action scores on the CIFAR10 test set, across multi-
ple models. As baseline we compare against correlation of
action scores on multiple training runs of the same model.

Results are presented in Table 1 and Figure 14.
These results indicate that correlation of action scores

across models is lower than the same model over multiple
runs, which we believe shows evidence that each model has
a uniquely different inductive bias, which leads to produc-
ing different action scores and a variety of difficulty rank-
ings between easiest and most difficult inputs. The sup-
plementary material contains additional results on Fashion

Models vs Class Ove
ral

l

Airp
lan

e

Auto Bird Cat Dee
r

Dog Frog Hors
e

Ship Truc
k

CNN-Keras vs ResnetV2 0.645 0.581 0.542 0.555 0.634 0.635 0.650 0.730 0.670 0.629 0.689
CNN-Keras vs Xception-Mini 0.607 0.604 0.542 0.565 0.547 0.538 0.622 0.668 0.643 0.595 0.630
Xception-Mini vs ResNetV2 0.711 0.689 0.702 0.686 0.671 0.646 0.722 0.742 0.656 0.764 0.775

CNN-Keras vs CNN-Keras 0.870 0.886 0.819 0.844 0.850 0.874 0.885 0.873 0.881 0.866 0.851
ResnetV2 vs ResNetV2 0.830 0.823 0.838 0.806 0.800 0.794 0.824 0.840 0.768 0.878 0.870
Xception-Mini vs Xception-Mini 0.796 0.775 0.798 0.769 0.754 0.787 0.759 0.825 0.806 0.842 0.855

Table 1. Comparison of correlation between action scores for pairs of models, separated by class, on CIFAR10. The bottom rows of this
table show baseline correlations between two runs of the same model.

RND
(acc: 98.1)

ORG
(acc: 99.0)

VAL
(acc: 56.8)

0

20

40

60

80

Ac
tio

n

Action Distribution with 85 epochs (3-layer CNN)

RND
(acc: 72.4)

ORG
(acc: 92.7)

VAL
(acc: 66.9)

0

100

200

300

400

Ac
tio

n

Action Distribution with 85 epochs (ResNet)

Figure 12. Distribution of action score for training samples with
random labels, ground-truth and for validation samples. Distribu-
tion for a 3-layer CNN (left) and ResNet (right).

05 07 12 13 03 01 16 06 11 17 08 18 14 19 04 02 15 10 00 09
Index of best chunk to add to training

0.50

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

Action
max_RND3
baseline

05 07 12 13 03 01 16 06 11 17 08 18 14 19 04 02 15 10 00 09
Index of best chunk to add to training

0

5

10

15

20

25

30

35

Ac
tio

n

Cumulative Action
avgAction (per Chunk)

Figure 13. Training with samples that maximize accuracy. Left:
sorting the dataset by action score consistently yields better cur-
ricula than an equally sized random sample. Right: mean action
score as the size of the dataset increases. The average action score
increases as more data becomes available.

MNIST and FERPlus, which strengthen our conclusions.

5. Conclusions and Future Work
In this work we presented a method for calculating the

difficultly and possible biases of a model. Our method
doesn’t requires external supervision nor a modification of
the original model, and it can be easily integrated in any
learning framework. We tested our method in multiple dif-
ferent settings that included a wide range of models and
tasks. Our results indicate that the maximum and minimum
action scores do qualitatively correspond to difficult or bi-
ased samples. Moreover, we explored applications of our
metric as a data auditing tool that can systematically iden-
tify mislabeled samples and regions of interest.

We believe that our action score can be used by the com-
munity to diagnose datasets and models, and to preemp-

0 10 20 30 40 50 60 70
Quantile

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
rr

e
la

ti
o
n
 b

e
tw

e
e
n
 A

ct
io

n
 S

co
re

s
>

 Q
(q

)

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

(a) Keras CNN vs ResNetv2

0 10 20 30 40 50 60 70
Quantile

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
rr

e
la

ti
o
n
 b

e
tw

e
e
n
 A

ct
io

n
 S

co
re

s
>

 Q
(q

)

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

(b) Keras CNN vs Mini Xception

0 10 20 30 40 50 60 70
Quantile

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o
rr

e
la

ti
o
n
 b

e
tw

e
e
n
 A

ct
io

n
 S

co
re

s
>

 Q
(q

)

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

(c) ResNet V2 vs Mini Xception

Figure 14. Correlations as a function of the top action scores,
where the threshold is a particular quantile of the data. Our re-
sults show that correlation is only relatively high for lower action
scores, and higher action scores having low correlation. Results
on CIFAR10.

tively evaluate their biases. The limitations of our method
include the need to train a model to estimate the difficulty
on a given set, and that the score could be sensitive to high-
level training hyper-parameters such as the optimizer.

Acknowledgements
This work was supported through several grants: Ger-

man Federal Ministry of Economics and Energy during the
Projects KiMMI-SF and PhysWM (Grant 50RA2022, and
50RA2126B), German Federal Ministry of Education and
Research through Project SustainML (Grant 101070408),
and Carl Zeiss Foundation through Project Sustainable Em-
bedded AI (P2021-02-009).

References
[1] Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimat-

ing example difficulty using variance of gradients. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10368–10378, 2022. 1, 2

[2] Emad Barsoum, Cha Zhang, Cristian Canton Ferrer, and
Zhengyou Zhang. Training deep networks for facial expres-
sion recognition with crowd-sourced label distribution. In
ACM International Conference on Multimodal Interaction
(ICMI), 2016. 3

[3] Nicholas Carlini, Ulfar Erlingsson, and Nicolas Papernot.
Distribution density, tails, and outliers in machine learning:
Metrics and applications. arXiv preprint arXiv:1910.13427,
2019. 1, 2

[4] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto,
Alex Lamb, Kazuaki Yamamoto, and David Ha. Deep
learning for classical japanese literature. arXiv preprint
arXiv:1812.01718, 2018. 3

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 4

[6] Li Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Maga-
zine, 29(6):141–142, 2012. 3

[7] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010. 4

[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1

[9] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In International
Conference on Machine Learning, pages 1321–1330. PMLR,
2017. 1

[10] Fredrik K Gustafsson, Martin Danelljan, and Thomas B
Schon. Evaluating scalable bayesian deep learning methods
for robust computer vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pages 318–319, 2020. 1

[11] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-
teaching: Robust training of deep neural networks with ex-
tremely noisy labels. In NeurIPS, volume 31, 2018. 2

[12] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and
Li Fei-Fei. Mentornet: Learning data-driven curriculum for
very deep neural networks on corrupted labels. In ICML,
2018. 2

[13] Jason Jo and Yoshua Bengio. Measuring the tendency
of cnns to learn surface statistical... arXiv preprint
arXiv:1711.11561, 2017. 1

[14] Been Kim, Oluwasanmi Koyejo, Rajiv Khanna, et al. Ex-
amples are not enough, learn to criticize! criticism for inter-
pretability. In NeurIPS, pages 2280–2288, 2016. 2

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 3

[16] Agata Lapedriza, Hamed Pirsiavash, Zoya Bylinskii, and
Antonio Torralba. Are all training examples equally valu-
able? arXiv preprint arXiv:1311.6510, 2013. 2, 6

[17] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 4

[18] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker
Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer,
Inioluwa Deborah Raji, and Timnit Gebru. Model cards
for model reporting. In Proceedings of the conference on
fairness, accountability, and transparency, pages 220–229,
2019. 10

[19] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural
networks are easily fooled. pages 427–436, 2015. 1

[20] Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A Smith, and
Yejin Choi. Dataset cartography: Mapping and diagnosing
datasets with training dynamics. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 9275–9293, 2020. 2

[21] Kailas Vodrahalli, Ke Li, and Jitendra Malik. Are all training
examples created equal? an empirical study. arXiv preprint
arXiv:1811.12569, 2018. 2

[22] Pei Wang and Nuno Vasconcelos. Towards realistic predic-
tors. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 36–51, 2018. 2

[23] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
3

[24] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learn-
ing requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016. 1, 6

