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Abstract

Zero-shot classification (ZSC) is the task of learning pre-
dictors for classes not seen during training. The different
methods proposed in literature are evaluated over specific
datasets with their specific class partitions, but little atten-
tion has been paid to the impact of the dataset granular-
ity when ZSC is performed. The novelty of this work is to
generate synthetic datasets by controlling their granularity
level to analyze the ZSC performance afterwards. More-
over, it presents an approach that allows us to preserve the
visual and semantic structures. The experiments show that
ZSC performance exhibits strong differences depending on
the data granularity and it reveals the relevance of both vi-
sual and semantic spaces when performing ZSC.

1. Introduction
In recent decades, image classification systems have

improved dramatically. This has been achieved by the
availability of large amounts of labeled images (used to
train the classification models) in addition to the remarkable
increase in computational capacity. While the amount of
data is sufficiently large, the performance of the classifiers
can vary depending on how many samples of a given
category are available. In practice, the image datasets
exhibit a long tail phenomena, namely, many instances are
observed for a small set of categories but few instances for
a large number of classes. In this context, paradigms such
as few-shot learning have emerged, which aims at learning
classifiers with few training samples. Zero-shot learning is
the task of learning classifiers for categories for which no
instances have been seen during training [9].

The general approach to address the zero-shot classifi-
cation problem is to use a set of known categories to train
the model and adapt it to the (unknown) target categories.
To achieve this, it is necessary to introduce semantic
information that allows us to describe both training and
query categories. From the beginning of the zero-shot
learning paradigm, different types of side information have

been explored taking the form of visual attributes [9], word-
embeddings [11], class hierarchies [1], etc. In literature,
visual attributes are shown as the most effective output code
representation. Since all the categories are represented by
the same source of information, it is possible to learn how
the known classes are related to the unknown.

As could be seen, in ZSC not only is the image repre-
sentation (visual space) important but also the class repre-
sentation (semantic space). One of the most common ap-
proaches to address this task are based on learning a pro-
jection between both visual and semantic representation
spaces [1, 2, 16]. The idea is to project one space onto the
other in order to compare how compatible are the different
concepts for a given query image. Based on this approach,
the proposal of this study is to use a bilinear compatibility
model based on a structured support vector machine model
SSVM-multiclass [19] similar than [2] but adding different
penalty terms to preserve the geometric structure of the vi-
sual or semantic spaces (or both).

The most common procedure in ZSC literature is to
compare the different methods using some of the typical
datasets. The most used datasets are Animal with Attributes
(AWA) [9], Caltech-UCSD Birds (CUB) [20] and Sun At-
tributes (SUN) [14]. These datasets have the particular-
ity of providing visual attributes to describe its categories.
While AWA is considered a coarse-grained dataset, CUB
and SUN are considered fine-grained. The granularity of
these datasates are conceptually defined by considering the
meaning of the categories (for instance, AWA is composed
of different types of animals and CUB different species of
the same animal). In this context, AWA is a coarse-grained
dataset since its categories are more distinguishable con-
cepts compared with CUB. Despite that, there are no spe-
cific studies with respect to the granularity relationships be-
tween them.

In this work we don’t have the intention of comparing
the performance of zero-shot classifiers over the different
literature datasets since they have been extensively studied.
Instead, we pretend to create synthetic datasets of different
granularity levels with the intention of analyzing the impact



of ZSC applied on one dataset with different granularities.
As the ZSC setting needs a suitable semantic space, an

appropriate proposal is to use one of the literature datasets
as base to create the synthetic data. The data generation is
based on the Caltech-UCSD Birds (CUB) [20] dataset and
the synthetic data are created by introducing a parameter to
define the granularity level. The goal is to obtain different
variants of one dataset, where each one of them differs in
its granularity. Then, use them to compare the impact of the
visual and semantic space when ZSC is performed.

In summary, the contribution of this study is to create
synthetic datasets to analyze how ZSC works on different
levels of granularity and also to explore the relevance of the
visual and semantic space.

In the following section, we will introduce the model
proposal, details of the data generation as well as metrics
for measuring the dataset granularities.

2. Related work
One of the earliest definitions of learning without la-

beled data was presented in 2008 by Larochelle et al. under
the name of zero-data learning [10]. At 2009 Lampert et
al. [9] present the zero-shot learning definition and address
it by using visual attributes. The methods presented at [9]
are Direct Attribute Prediction (DAP) and Indirect Attribute
Prediction (IAP), both algorithms are based on two stages.
For instance, DAP learns an image classifier by combining
a class-attribute predictor with an attribute-image predictor.
Another popular family of methods are based on linear
mappings between the visual and semantic space. Convex
Combination of Semantic Embeddings (ConSE) [13]
defines an implicit projection by defining a convex sum of
semantic embeddings. Deep Visual Semantic Embedding
(DeViSE) [4] is based on Ranking SVM [8], it maps the
visual features to the word-embedding category representa-
tions. Attribute Label Embedding (ALE) [1] uses a bilinear
compatibility function and a weighted approximation to
the ranking objective function [23]. Similarly, Structured
Joint Embedding (SJE) optimizes a ranking loss (based
on the SSVM-multiclass [19]) by giving more importance
to the top of the list. Embarrassingly Simple Approach to
Zero-Shot Learning (ESZSL) [16] propose a linear model
that could be solved by a closed-form.

More recently, models based on generative adversarial
networks (GANs) have gained popularity. These methods
generate synthetic (or ”fake”) images to obtain training
instances of the target categories [18, 25]. Although these
methods report the most competitive results, it is important
to notice that they need to use the semantic represen-
tation of the unknown categories for training, which is
a different characterization from the original zero-shot

learning setting. This characterization is identified as
class-transductive instance-inductive [21].

Beyond these general aspects of the models, different ap-
proaches have been proposed by realigning the geometric
structures of the visual and semantic spaces. For instance,
[7] learns a new representation (class-prototypes) for the vi-
sual and semantic spaces that are projected into a new com-
mon space where the similarities between the images and
concepts are performed. The method aims to improve the
semantic description by exploiting information from the vi-
sual space. The authors suggest an advantage of using the
visual space as the embedding space for classification us-
ing nearest-neighbor. Similarly, [22] shows that optimizing
visual space is beneficial for zero-shot learning. Also, [17]
proposes to analyze the contribution of the visual and se-
mantic information for ZSC showing a preference over the
visual space to a greater or lesser extent. In [15] the authors
propose to improve the unsupervised word-embedding by
realigning them using the visual space as reference. The
approach uses a triplet loss formulation in order to disam-
biguate unsuitable meanings. This method works as a pre-
processing, not being specifically a ZSC algorithm. An-
other approach [26] is to build a graph to describe the neigh-
bors structure of the semantic and visual spaces and learn
how to project both spaces into a new space to remove the
visual-semantic ambiguity.

3. Preliminaries

In zero-shot classification (ZSC) we are given a train-
ing set Dtr = {(xi, yi)}Ni=1 of image-label pairs, xi ∈ X ,
yi ∈ Ytr ⊂ Y , sampled from a known set of visual cate-
gories. The goal is to learn a mapping f : X → Y from
Dtr to classify samples over a different set Yts ⊂ Y , where
Ytr ∩Yts = ∅. If Ytr and Yts are not disjoint sets, the prob-
lem is known as generalized zero-shot learning. In addition
we assume that each class y has a semantic representation
y ∈ Re (e.g. visual attributes) and each image has its fea-
ture vector x ∈ Rd. We use a bilinear scoring function
F : X ×Y → R+:

F (x, y;W ) = xTWy (1)

that measures the compatibility between an input image x
and a concept y. The parameters of this function (W ∈
Rd×e) are learned using Dtr. After training the prediction
are defined by

ŷ = argmax
y∈Yts

F (x, y;W ). (2)

Using this function, Akata et al. [2] propose to optimize
the following loss function:



ℓsje(X,Y ;W ) =
1

N

∑
n

max
y∈Y

{0, I[y ̸= yn]

+ F (xn, y;W )− F (xn, yn;W )} (3)

with I[b] = 1 if b is true and 0 in the other case.

4. Approach
This work has two contributions: first, the definition of

the model to optimize the classifier by preserving the vi-
sual (semantic) structures. And second, the synthetic data
generation with parametric granularity.

4.1. Model

The model proposal is to extend the loss function of the
Eq. (3) with the aim to control the structures of the semantic
and visual spaces. This extension is made by adding a new
term that encodes the relationship between both spaces. In-
tuitively, the encoding takes the form of a graph where the
vertices are categories and the edges represent the distances
between them. In the case of the semantic space, the defini-
tion is straightforward because each category is represented
by a vector. In order to have a single representation for each
visual category, we averaged the instances of each class.
Then, we can define two matrices that encode the similarity
between the categories in the visual and the semantic space:

GX = X̄X̄T (4)

GY = ΦΦT . (5)

with, X̄y = avg{x|x ∈ X , class(x) = y} and ΦTy = y,
y ∈ Y . In the same manner,

GXW = X̄W (X̄W )T = X̄WWT X̄T (6)

GWY = ΦWT (ΦWT )T = ΦWTWΦT (7)

are the matrices that define the graph to represent the
visual (semantic) space after projecting it to the semantic
(visual) space. GX

ij is the similarity between the classes i

and j in the visual space but GXW
ij is the similarity of i and

j when they are projected to the semantic space and one
more time against the visual space. Similarly for GY

ij and
GYW
ij .

We can also encode the structure of both spaces jointly:

HXY
⊙ = GX ⊙GY , HXWY

⊙ = GXW ⊙GWY (8)

with ⊙ the Hadamard product, i.e. (A ⊙ B)ij = AijBij
1.

The idea behind this is to weigh those similarities that are
1Notice that ⊙ could be replaced by any element-wise operator.

important enough in both spaces simultaneously.

Finally, our loss function is defined by:

L(X,Y,Φ;W ) = ℓsje(X,Y,Φ;W ) + λℓψ(X,Φ;W ) (9)

With λ an hyperparameter that trade-off between ℓsje and
the preservation term ℓψ . The latter could be defined in dif-
ferent flavors:

ℓmul = ||HXY
⊙ −HXWY

⊙ ||2F (10)

ℓmul(x→y) = ||GXW −GY ||2F (11)

ℓmul(y→x) = ||GX −GWY ||2F (12)

Notice that while the Eq. (10) aims to preserve the struc-
tures of both spaces, Eq. (11) uses the semantic space as a
reference to align the visual space and Eq. (12) uses the vi-
sual space as an anchor to drive the structure of the semantic
space.

4.2. Synthetic data generation

To be able to analyze the impact of ZSC on different
granularities, it is proposed to create synthetic datasets.
Since the ZSC problem requires that the categories could
be represented by an auxiliary source of information
(e.g. visual attributes) we must consider this fact when
synthesizing. Thus, we need to create datasets with variable
granularity but with a suitable semantic representation. The
proposed idea is to manipulate the CUB [20] dataset in
order to variate the granularity while maintaining the given
attribute representation of the categories.

It is possible to generate datasets of different granular-
ities using the Guyon [5] method2. This algorithm creates
clusters of points normally distributed (for a given variance)
about vertices of an n-dimensional hypercube and assigns
an equal number of clusters to each class. We can adapt this
mechanism in order to maintain the original geometric rela-
tionship of the visual features of CUB instead of using the
hypercube vertices. The adaptation works as follow:

0. Use the average of each class of a given dataset as the
input centroids.

1. After normalizing the centroids. Scale them by some
scalar γ.

2. Generate an specific number of random points around
each centroid normally distributed by a standard devi-
ation σ.

2https : / / scikit - learn . org / stable / modules /
generated/sklearn.datasets.make_classification.
html



3. Normalize all the vectors to the unit sphere.

If we repeat this process using different scale factors γ and
maintaining the same σ, we obtain datasets of different
granularities. Namely, if γ1 > γ2 and using the same σ,
the clusters generated by γ1 have less intra-class distance
and bigger inter-class distance with respect to the clusters
generated by γ2. Thus, γ defines the class separation. The
idea is shown in Figure 1.

As a result we can manipulate any well known dataset
used in ZSC literature obtaining different granularities and
keeping the structure of the visual centroids and using the
original semantic space which is crucial for the knowledge
transfer in ZSC.

5. Experiments
Our experiments are based on the optimization of

the Eq. (9) and using the different options as in the
Eq. (10), (11) and (12). The synthetic datasets are based on
the CUB dataset and ResNet101 [6] features. It means that
the visual space is given by the features extracted from the
ResNet101 model and the average per class vectors are used
to initialize the Guyon algorithm described in Section 4.2.
The semantic space is given by the default class description,
namely, it is defined by the visual attributes of the CUB
dataset.

ZSC performance is measured by the average per-
class top-1 accuracy [24]. The model is trained us-
ing SGD. At validation time, the learning rate and
the hyperparameter λ (Eq.(9)) are searched in the set
{10−1, 10−3, 10−5, 10−7}, taking the values that maxi-
mize the validation accuracy. As a preprocessing, L2-
normalization is applied on both the visual and semantic
representations. Regarding the train/test class split, it uses
the proposed split by Xian et al. [24] and also four different
random splits.

For a sanity check, we measure the granularity of the
dataset D by the average standard deviation as follow:

σ̄(D) =
1

C

C∑
c=1

σ̄(c), σ̄(c) =
1

d

d∑
i=1

[σ(c)]i,

σ(c) = std{x|class(x) = c}.

(13)

with C the number of classes. The insight behind this is to
measure how compressed the clusters are. Thus, if the class
separator γ increases, σ̄(c) must decrease. Also, we use
the RSM (Revised Silhouette with Medoids index), RankM
(Ranking with medoids index) [3]:

RSM(D, δ) =
1

n

n∑
i=1

δ(xi, c
′)

δ(xi, cxi
)

(14)

where cxi
is the centroid of the cluster to which xi belongs

11

1
1

2

3

11

11

Figure 1. Data generation with different granularities. The image
shows two different datasets. The space at the right has a finer
granularity than the left space. The centroids (stars) are scaled by
γ1 (left) and γ2 (right) and the clusters are generated for the same
standard deviation (shadow). Then, all vectors are normalized to
the unit sphere. As γ1 > γ2 the separation of the resulting clusters
is greater on the left space, generating a more coarse-granularity
respect to the other space.

(i.e. the ground-truth class of xi) and c′ is the centroid clos-
est to xi: c′ = argminc̸=cxi

δ(c, xi), for a given distant δ.

RankM(D, δ) = 1− C

n(C − 1)

n∑
i=1

(
1− 1

Ric

)
, (15)

where Ric is the rank of the xi’s class centroid among
all class centroids. In addition, we run a SVM linear clas-
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Figure 2. Top: Average per-class top-1 accuracy and std. dev. of
the methods. Bottom: Average per-class top-1 accuracy and std.
dev. of each proposal separately.

sifier to check if the classification accuracy improves as the
class separator grows. The SVM is trained and tested with
a 70/30 class split over the complete dataset.

All these metrics are summarized in Table 1. It shows
that as the class-separator (γ) increases, the RSM increases
and the SVM classification improves. Also, the average
std.dev. (σ̄) decreases. Which indicates that effectively the
data generation works as expected. Notice that the RankM
measure is not useful in this case, this comes from the fact
that RankM measures the granularity of a given datasets
based on how many points of any cluster are closer to an-
other cluster. The last statement is interesting because it
shows that not all granularity metrics are equally useful.

Table 2 shows the results of applying the different pro-
posals (Eqs. (9)–(12)) and they are summarized in Figure 2.
sje indicates the SJE method (Eq. (9) without extensions:
λ = 0). mul(x → y) indicates the SJE loss function
extended with ℓmul(x→y) (Eq. (9)+(11)) and similarly for
mul(y → x)/ℓmul(y→x) and mul/ℓmul. Since we created

γ σ̄ rankm rsm SVM

8 0.0215 1 1.021 65.5
12 0.0211 1 1.030 91.1
16 0.0206 1 1.042 98.2
32 0.0178 1 1.117 100

Table 1. Different granularity measures for each datasets.

γ sje mul
mul

(x → y)
mul

(y → x)

PS

8 56.26 55.14 55.01 55.31
12 70.93 71.95 72.50 71.61
16 76.77 78.74 78.44 78.10
32 84.21 88.79 86.35 81.73

S1

8 48.73 47.27 46.8 48.97
12 60.53 62.56 59.58 62.09
16 64.36 67.65 63.00 67.31
32 70.8 77.65 75.01 70.06

S2

8 52.51 49.22 51.66 52.38
12 69.89 68.23 64.29 70.84
16 77.43 74.68 74.00 77.43
32 82.96 83.98 83.71 82.96

S3

8 48.00 48.78 47.18 48.17
12 62.00 60.86 63.00 61.36
16 67.50 67.03 69.70 65.23
32 71.90 73.13 78.00 66.42

S4

8 48.73 47.27 46.8 48.97
12 60.53 62.56 59.58 62.09
16 64.36 67.65 63.00 67.31
32 70.80 77.65 75.01 70.06

Avg
(std)

8 48.75 47.98 47.87 48.93
(2.81) (1.22) (2.59) (2.58)

12 62.90 62.66 61.25 63.55
(4.81) (3.99) (2.80) (4.94)

16 68.32 68.50 68.07 69.05
(6.28) (4.33) (4.82) (5.65)

32 73.68 76.84 76.32 73.09
(6.30) (5.27) (6.31) (7.10)

Table 2. Average per-class top-1 accuracy over the synthetic
datasets of different class separators γ. Si are random class splits
and PS is the split proposed by Xian et al. [24]. Avg(std) over
{Si}.

the synthetic data using the CUB dataset, it is possible to
run the classifiers with the class partition proposed by Xian
et al. (PS) [24]. To analyze the variability we created four
different random splits (S1, ..., S4).



The results show that as the class separability γ grows,
the classification improves as expected. In addition, the
variability with respect to the class partition is higher when
the granularity is more coarse, a similar conclusion is men-
tioned in [12]. This phenomena is a clear tendency inde-
pendently of the method, which implies that ZSC is more
stable over fine-grained datasets. Such observations sug-
gest that the variability of the classification task in zero-
shot setting can cause confusion when comparing methods
using coarse-grained dataset. Therefore it may be crucial to
consider granularity and variability as part of the evaluation
protocol. Not paying attention to granularity (particularly in
the coarse-grained cases) is to neglect the variability, which
could bias the selection of a ZSC method in practice.

Also, notice that there are differences when the method
includes the structure of the visual (semantic) space as a
guide for the semantic (visual) space. For instance, when
considering the case of the greater separability (i.e. γ = 32)
both mul(x → y) and mul improve around 3 points, which
suggest that the semantic structure plays an important role.
Beyond this particular case, another observation is that mul
presents a better trade-off between the accuracy and the
variability. This could indicate that it is not convenient to
consider one of the spaces as more important than the other.
Thus, it leads us to hypothesize that there must exist an op-
timal combination between both visual and semantic space.
This conclusion is in line with [17]. These observations
could be better seen in Figure 2.

6. Conclusion
In this work an approach to analyze the behavior of ZSC

applied on synthetic datasets of different granularity levels
is proposed. We discussed how to generate suitable datasets
using the class centroids of the visual space of CUB to ini-
tialize the Guyon algorithm jointly with a scale factor. This
allows us to construct the same visual space with different
granularities maintaining the original semantic space.

The results show that for the fine-grained datasets the
performance variability is lower compared with the coarse-
grained cases, as seen in all the proposed methods. In addi-
tion, the results suggest that both visual and semantic space
are relevant and they play different roles in the classifica-
tion process which leads us to formulate the hypothesis of
a possible optimal combination of the information provided
for each space.

As a summary, the most important result throughout all
the experiments is the observed correlation between the
variability and the data granularity. This is a crucial ob-
servation, especially with coarse-grained data, because the
high performance variability could bias in practice the se-
lection of one method over another. Thus, as a methodolog-
ical conclusion, this study suggests to include the dataset

granularity as an important characteristic to obtain a more
comprehensive evaluation protocol for ZSC.
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