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Abstract

Symmetry is a distinguishing feature when diagnosing
the malignancy of skin lesions, those with an irregular
shape –asymmetry– are more likely to have a worse prog-
nosis. This work presents a novel approach for skin lesion
symmetry classification of dermoscopic images based on
deep learning techniques. Also, we introduce a new dataset
of labels for 615 skin lesions. During experimentation,
we also evaluate whether it is beneficial to rely on trans-
fer learning from pre-trained CNNs or traditional learning-
based methods. As a result, we present a new simple, robust,
and fast classification pipeline that outperforms methods
based on traditional approaches or pre-trained networks,
with a weighted-average F1-score of 64.5%.

1. Introduction

Malignant skin lesions, whose incidence rate is raising,
poses a major problem for public health [7]. Although ad-
vanced cutaneous melanoma is still incurable, its early diag-
nosis can prevent malignancy, and increase the survival rate
and treatment efficacy. The symmetry of a lesion is one of
the predominant features when differentiating melanocytic
patterns in skin lesions, since those with an irregular shape
–asymmetry– are more likely to have a worse prognosis.
However, the assessment of symmetry might be altered by
the individual judgment of the observers, which depends on
their experience and subjectivity [3]. Nowadays, special-
ists rely on the evaluation of dermoscopic images to com-
plement their clinical analysis. These images enable the
visualization of structures, shapes, and colors that are not
discernible by a simple visual inspection. Their use has
been shown to improve the diagnostic accuracy concerning
simple clinical observation, being up to 10-30% more ac-
curate [12]. To the best of our knowledge, only traditional
computer vision approaches have been used to tackle this
problem [1,6,11,15–18,21,22]. However, these approaches

may hinder both the interpretability and the direct measure-
ment of symmetry as an isolated feature, because symmetry
features are usually integrated within a general-purpose sys-
tem for the diagnosis of skin lesions, which usually relies
on the automatic and simultaneous extraction of multiple
features, such as color or texture [9, 14, 24]. Another dif-
ficulty is the lack of standard criteria on how to define the
symmetry of the lesion —based on the shape, or the dis-
tribution of colors and textures— or on how to quantify it
—using asymmetry indices or detecting the number of sym-
metry axes—, which complicates an objective comparison
with other approaches.

In this work, we aim at going a step forward, imple-
menting and assessing, for the first time, the adequacy of
deep learning techniques to classify skin lesions according
to their symmetry. To do so, 1) we propose a simple and ro-
bust CNN model that aims at classifying images depicting
skin lesions into three classes, namely: “fully asymmetric”,
“symmetric with respect to one axis”, or “symmetric with
respect to two axes”; 2) we introduce the SymDerm dataset,
a set of 615 labels for publicly available images according
to the symmetry of skin lesions1; 3) we compare our re-
sults to other traditional methods, and 4) we also perform a
transfer learning study where we evaluate whether it would
be beneficial to use transfer learning from pre-trained CNNs
or traditional learning-based methods.

2. SymDerm Dataset
Among the publicly available databases of skin lesions

that we are aware of, only the PH2 database [13] provides
expert annotated data —200 dermoscopic images— regard-
ing the lesion symmetry. To overcome the scarcity of data
we consider two strategies. The first one is based on us-
ing images from the PH2, which are already labeled, on
which we have introduced realistic artifacts —simulated
hair— following the approach described in [25]. That is,

1We will make the SymDerm dataset publicly accessible but available
on demand.



we generate variations of the same lesions which are as-
signed the original symmetry annotation. With this task-
consistent data augmentation technique, we enlarged the
PH2 dataset, from 200 to 438 annotated samples. The sec-
ond strategy consisted of randomly extracting images from
publicly available datasets, and asking three expert derma-
tologists to label according to their expertise the symmetry
of the lesion as either “0: fully asymmetric”, “1: symmet-
ric with respect to one axis”, or “2: symmetric with respect
to two axes”. Thus, we managed to provide an additional
set of 615 new expert annotations for the symmetry of skin
lesions, which we called the SymDerm dataset. To solve
the annotation discrepancy among the three experts, and to
provide unified labels for the model training and metrics
evaluation, we use the max voting method. It assigns the
class that has the maximum number of votes among the ex-
perts. If there is a total disagreement because each expert
selected a different label, we have decided to use the label
of the expert with the most years of experience. It is worth
mentioning that, in some lesions, dermatologists agree on
the difficulty of ignoring the bias introduced by their clini-
cal suspicion. Also, the annotation was affected by the limit
that they set to determine what is symmetrical and what is
not. In Figure 1, we show the confusion matrices between
each expert labels and the max voting labels. As we can
see, although dermatologists have tried to be as rigorous as
possible, subjectivity causes some images to be interpreted
differently between them. This is noticeable in the class of
symmetric lesions with respect to one axis.

Figure 1. Confusion matrices between the labels of each expert
and the maximum voting labels in the SymDerm dataset.

To sum up, we introduce a dataset with 1053 annotated
images based on the symmetry of the lesion, which con-
sists of 262 images from the EDRA2002 dataset [2], 438
images generated from the 200 samples of the PH2 dataset,
177 images from the ISIC Data Archive 2, 41 images from

2www.isic-archive.com

the dermis dataset 3, and 135 from the dermquest dataset 4.

3. Experimental Framework
Architecture structure The CNN-based model we pro-
pose, which is detailed in Figure 2, is fed with images from
the dataset of 1053 images depicted in Section 2, and it is
composed of 10 layers. The first one, the input layer, re-
sizes the images to a fixed size of 256 × 256 × 3, and it is
followed by 3 blocks, each consisting of one 3 × 3 convo-
lution layer and one down-sampling layer, which is applied
by a two-stride 3 × 3 convolution to reduce the spatial res-
olution. In each of these blocks, we use 8, 16, and 32 fil-
ters, respectively. Then, we reduce the number of obtained
high-level features from 32768 to 128, and later to 8 fea-
tures, by means of two dense layers. Finally, we use a Soft-
max layer to output a 3-class classification of the symmetry
of the lesions. The design of this model is based on the
well-known VGG16 network [20], which has achieved very
good results in numerous classification tasks. However, the
VGG16 model is more complex due to a greater number of
layers and therefore parameters. We believe that a smaller
network would be more appropriate with the amount of data
we have available for the problem in question.

Figure 2. Architecture of our proposed network.

Transfer Learning Strategy It is achieved by 1) consid-
ering pre-trained CNNs on the ImageNet dataset [5], such
as the VGG16 [20], the ResNet50 [8], and the Inception
V3 [23] and further fine-tuned on our dataset to adapt the
network to the problem at hand, and 2) using other sam-
ples annotated with a published method. Of the methods
presented in the literature, our 3-class taxonomy only coin-
cides with the work presented by Toureau et al. [26], and
also based on the good results published by their algorithm,
we use this method to label new data and used them together
with the 1053 images we already had.

Implementation, learning details, and evaluation All
the experiments were carried out with the Windows 10 Pro
64-bit operating system, a single NVIDIA Quadro P6000
24GB, and an HP Z640 Workstation with Intel®Xeon ®E5-
2620 v4 @ 2,1 2133 8C. We implemented the proposed ar-
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Table 1. Classification performance results averaged across the 5 fold of the cross-validation, for all possible setups of experiments, as well
as the performance of the expert’s agreement with the resulting max voting labels. The best results are in bold.

weighted-averageExp B.Acc Kappa score Precision (Pr) Recall (R) F1-score
0 Agreement Expert 1 and Max voting (3 classes) 0.803 0.778 0.869 0.865 0.865
1 Agreement Expert 2 and Max voting (3 classes) 0.900 0.852 0.921 0.907 0.911
2 Agreement Expert 3 and Max voting (3 classes) 0.838 0.790 0.875 0.870 0.869
3 Toureau et al. [26] (3 classes) 0.498 ± 0.018 0.291 ± 0.025 0.566 ± 0.015 0.562 ± 0.016 0.560 ± 0.015
4 Ali et al. [1] (3 classes) 0.479 0.256 0.563 0.523 0.539
5 Proposed method (3 classes) 0.615 ± 0.019 0.429 ± 0.030 0.690 ± 0.026 0.627 ± 0.022 0.645 ± 0.021
6 Stoecker et al. [21] (2 classes) 0.562 0.121 0.639 0.551 0.482
7 Ali et al. [1] (2 classes) 0.676 0.353 0.678 0.676 0.677
8 Proposed method (2 classes) 0.719 ± 0.029 0.441 ± 0.059 0.735 ± 0.035 0.722 ± 0.029 0.718 ± 0.029
9 VGG16 [20] pre-trained (3 classes) 0.584 ± 0.061 0.365 ± 0.084 0.683 ± 0.039 0.576 ± 0.061 0.597 ± 0.060
10 ResNet50 [8] pre-trained (3 classes) 0.341 ± 0.024 0.008 ± 0.021 0.123 ± 0.060 0.279 ± 0.104 0.143 ± 0.077
11 Inception V3 [23] pre-trained (3 classes) 0.436 ± 0.041 0.162 ± 0.064 0.558 ± 0.056 0.428 ± 0.044 0.420 ± 0.055

12
Proposed method +
ExtraDataToureau (3 classes) 0.516 ± 0.062 0.301 ± 0.129 0.593 ± 0.094 0.544 ± 0.106 0.556 ± 0.111

chitecture using Keras [4] and trained it from scratch fol-
lowing a 5-fold stratified cross-validation strategy with 1)
a batch size of 8, 2) randomly initialized weights, 3) the
Adam [10] optimizer with a learning rate experimentally
set to 10−4, 4) the Weighted Categorical Cross-Entropy loss
function following an early stopping policy based on mon-
itoring the validation loss, and restoring the weights of the
best epoch. We divided the dataset into 80% for training
and 20% for the test and performed data augmentation in
the training phase to improve the model’s ability to gener-
alize, restricted to those operations that do not distort the
shape of the lesion, namely: flips in both horizontal and
vertical directions.

To perform the quantitative evaluation, which provides
an objective and comparable evaluation, we rely on several
performance measures: Balanced Accuracy (B.Acc), Kappa
score, Precision (Pr), Recall (R), and F1-score. We also an-
alyze the obtained results from a qualitative point of view,
relying on the Gradient-Weighted Class Activation Maps
(Grad-CAM) [19] to visualize which features of an input
image contribute the most to activate the neurons to obtain
the final decision of the model by calculating the gradient
of the output with respect to the input image. With this tool,
we provide better interpretability to increase the confidence
of the specialists in the robustness of the model’s decision-
making that we present.

4. Results and Discussion

Our method was mainly conceived to classify the sym-
metry of the lesion into “fully asymmetric”, “symmetric
w.r.t one axis”, and “symmetric w.r.t two axes”. However, as
far as we know, there is no method based on deep learning
with which we can compare our proposed method. Hence,
we have decided to assess its suitability against some meth-
ods present in the literature and based on traditional tech-
niques. In this respect, we have decided to compare it with

the version based on texture and shape of the method pre-
sented by Toureau et al. [26] and the method of Ali et al. [1],
as they follow the same strategy when classifying the lesion
symmetry according to 0, 1, or 2 perpendicular symmetry
axes. Given the specifications of some other methods pre-
sented in the literature, as is the case of Stoecker et al.’s
algorithm, we had to simplify our problem and consider it
as a binary classification one. In this case, we merge classes
“symmetric w.r.t one axis”, and “symmetric w.r.t two axes”
into the class “symmetric”.

We present, in Table 1, the quantitative results of the ex-
periments that have been carried out in this study. The first
three rows —experiments 0 to 2—, refer to the agreement
between the labeling of the test set established by each of
the labels of each expert and the maximum voting labels.
We can observe, from the results of experiments 3 to 5, that
when evaluating a three-class classification problem, our
proposed method with a B.Acc of 61.5%, a Kappa Score of
0.429, a weighted-average Pr of 69%, a weighted-average
R of 62.7% and a weighted-average F1-score of 64.5%,
widely overcomes the method of Toureau et al. and Ali et
al., with a minimum difference with respect to the first of
6.5% in all performance measures. On the other hand, when
considering our problem as a binary one,—experiments 6
to 8—, we see how our proposed method with a B.Acc of
71.9%, a Kappa Score of 0.441, a weighted-average Pr of
73.5%, a weighted-average R of 72.2% and a weighted-
average F1-score of 71.8%, substantially improves the re-
sults obtained by the method of Stoecker et al. and Ali et
al. In both cases, the performance of all the measures are
correlated, which indicates that we can trust them.

Next, we analyze the use of transfer learning to classify
the symmetry of skin lesions using pre-trained networks,
—experiments 9 to 11—. We conclude that the proposed
method, which is a simpler network, achieves better results
than other well-known and more elaborated networks that



have been trained in a large database such as ImageNet. It
should be noted that among the pre-trained networks, the
VGG16 is the one that obtains the best results, which sup-
ports our premise that for the task in question, the most ap-
propriate was a network with fewer parameters. Finally,
with experiment 12, we show the results of introducing
more data labeled by the method of Toureau et al. Although
we expected that the results of our model with the extra data
could exceed those of the baseline, this has not been the
case, which makes sense after seeing the performance of
the Toureau et al. method on our database.

Figure 3. Example of correct (bold) and misclassified predictions
(red) of our proposed model compared to their GTs (bold).

From a qualitative point of view, in Figure 3, we can
see some examples of correct and misclassified predictions
of our proposed model, respectively, when considering the
three-class classification problem. Whereas, from Figure
4a, we can see in more detail how the model is able to cor-
rectly classify 85.29% of samples from class ‘Asymmetric’,
31.15% of samples from class ‘Symmetric w.r.t 1 axis’, and
65.88% of samples from class ‘Symmetric w.r.t 2 axes’. In
terms of prediction errors, we can see that ‘Asymmetric’
samples are misclassified as any of the other two classes
tend to occur with the same frequency, while for the classes
‘Symmetric w.r.t 1 axis’ and ‘Symmetric w.r.t 2 axes’, the
errors occur more toward the class ‘Asymmetric’. It should
be noted that most errors occur where there is more discrep-
ancy on the part of the experts when it comes to labeling the
images, that is in the class ‘Symmetric w.r.t 1 axis’. This last
issue, as can be seen in Figure 4b, can be solved if we reduce
the complexity of the problem to a taxonomy of two classes
—‘Asymmetric’ vs. ‘Symmetric’—. To further study and
understand the behavior of the network we show in Figure
5 the Grad-CAM of both correctly- and wrongly-classified
samples. We can see that when classifying correctly a le-
sion, our proposed method focuses clearly both on the inte-
rior of the lesion and on its border with the skin region. This
is not the case when considering misclassified samples. Fi-
nally, we notice that the black frame attracts great attention
to the network, which can lead to errors.

5. Conclusions
In this work, we have presented a novel CNN-based

method for the task of skin lesion symmetry classification
on dermoscopic images. Also, we have introduced a set of
615 labels for publicly available images according to the

Figure 4. Confusion matrices resulting from (a) the base experi-
ment of the proposed method, and (b) results from the proposed
method when considering 2 classes: ‘Asymmetric’ and ‘Symmet-
ric w.r.t 1 or 2 axes’.

Figure 5. Example of extracted Grad-CAM from the network’s last
convolutional layer (right column) for two images (left column).

symmetry of skin lesions, which have been labeled by ex-
pert dermatologists. From the results, we conclude that our
proposed method widely overcomes the traditional meth-
ods of Toureau et al. Stoecker et al., and Ali et al. in all
performance measures. These good results demonstrate the
convenience of CNNs for the task at hand. However, the
performance of our proposed method for the three-class
problem is limited by the experts’ discrepancy. Another
strength of this work compared to most traditional meth-
ods is that it does not require segmentation of the lesion to
obtain symmetry of the lesion. Regarding the transfer learn-
ing approach, we observe how shallow networks obtain bet-
ter results in the classification, mainly due to the scarcity
of data, and the how our model has been able to discard
low-quality information, when new data was incorporated,
preventing its performance from collapsing. However, we
conclude that it is preferable not to use this low-quality in-
formation. Finally, as future work, we aim to study more in-
depth, some aspects of our work such as the number of im-
ages used to train the network and remove the black frames
in the images.
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