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Abstract

The advances in automatic sign language translation
(SLT) to spoken languages have been mostly benchmarked
with datasets of limited size and restricted domains. Our
work advances the state of the art by providing the first
baseline results on How2Sign, a large and broad dataset.

We train a Transformer over I3D video features, using
the reduced BLEU as a reference metric for validation, in-
stead of the widely used BLEU score. We report a result of
8.03 on the BLEU score, and publish the open-source im-
plementation to promote further advances.

1. Introduction
Sign language translation (SLT) is the task of translat-

ing continuous sign language videos into spoken language
sentences. SLT is a challenging multimodal problem that
requires both a precise understanding of the signer’s pose
and the generation of a textual transcription. The current
state of the art for automatic SLT is still far away from con-
sidering the problem solved [8, 12, 14, 45, 47, 48].

Recent advances in SLT have followed a trajectory sim-
ilar to other computer vision and natural language process-
ing problems: training deep neural networks on large-scale
datasets. However, the availability of public sign language
datasets is limited and especially reduced when considering
parallel corpus of videos and their textual translations. Up
to date, the most used dataset to assess the progress in SLT
is PHOENIX-2014-T [20], with only 9.2 hours of video
recordings on the restricted weather forecasts domain.

In this work, we consider a much larger and complex
dataset, How2Sign [19], which contains almost 80 hours of
instructional videos from 10 different topics. In addition,
we explore and suggest using an alternative metric [17],
reduced BLEU (rBLEU) to better characterize the perfor-
mance and choose better checkpoints during training.

We provide open code and models which allows repro-
ducibility and adaptation to other datasets.1

*Work done outside of Amazon
1https://github.com/imatge-upc/slt how2sign wicv2023

2. Related Work
Sign language video understanding has been addressed

from a variety of tasks: sign language recognition (SLR)
over isolated or continuous signs [1, 15, 21, 22, 32, 34, 36],
sign language translation (SLT) [7,13,20,25], sign language
production (SLP) [38–42] or retrieval [18]. Our work fo-
cuses on sign language translation.

Table 1 shows the current state of the art in terms of
the BLEU metric for different SLT benchmarks. Reason-
able scores in the range between 29 and 60 BLEU have
been reported in three datasets of limited vocabulary size:
KETI [26], PHOENIX-2014T [6], and CSL Daily [48].

Our work aims at the more open domain of instructional
videos across 10 different topics, to set the first SLT base-
lines on the How2Sign [19] dataset. This dataset has been
used for other sign language-related tasks [5, 18], but never
for SLT.

While the scores are not directly comparable, our base-
lines are similar to OpenASL [43]. Other works on alterna-
tive datasets of large scale obtained very poor BLEU scores:
1.0 in BOBSL [3], 0.4 in SWISSTXT-NEWS [9], 0.4 in
VRT-NEWS [9], or 0.37 in SRF [44] and 0.84 in Focus-
News [17] in the WMT shared task on sign language trans-
lation 2022 [33].

3. Data Preprocessing
One of the main challenges in SLT is the variability and

complexity of sign languages, which can be influenced by a
variety of factors such as the signer’s background, context,
and appearance. Therefore, it is important to preprocess
the data to reduce this variability. This includes techniques
such as visual feature extraction and normalization, as well
as standardizing the format of the target data.

3.1. Video tokenization
We choose I3D features [10] to extract video representa-

tions directly from the RGB frames, motivated by their ef-
fectiveness in the sign recognition [23,28] and retrieval [18]
tasks. I3D features consider not only visual cues, but also
temporal information. As a result, they provide a dense and

https://imatge-upc.github.io/slt_how2sign_wicv2023
https://imatge-upc.github.io/slt_how2sign_wicv2023
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Dataset Duration(h) Vocabulary(K) BLEU Domain
train val test train val test

KETI [26] 20.05 2.24 5.70  0.49 ! 57.37 [26] Emergency situations
PHOENIX-2014T [6] 9.2 0.6 0.7 2 0.9 1 25.59 [46] Weather Forecast
CSL Daily [48] 20.62 1.24 1.41 2 1.3 1.3 23.92 [11] Daily life
OpenASL [43]  288 !  33 ! 6.72 [43] Youtube (news + vlogs)

How2Sign [19] 69.6 3.9 5.6 15.6 3.2 3.6 8.03 (Ours) Instructional

Table 1. Comparison between SLT datasets based on the duration of the videos (in hours), number of unique words (in thousands) in the
vocabulary and SOTA on SLT without glosses.  ! indicate that in some cases only statistics on the whole dataset are provided.

reliable source of visual cues as input to our models.
The original I3D network is trained on ImageNet [16]

and fine-tuned for action recognition with the Kinetics-
400 [24] dataset. As shown in [2, 17, 18, 29, 35, 43], further
fine-tuning with sign language data is needed to properly
model the temporal and spatial information present in them.
We used the I3D features provided in [18].

3.2. Text processing

Text preprocessing is an important step in preparing raw
text data into a more suitable format for NLP models.

Similar to NLP pipelines, our system first converts raw
text to lowercase. We employ the Sentencepiece tok-
enizer [27] to segment the lowercase text into sub-word
units. Sub-word tokenization requires specifying a fixed
vocabulary size, which has trade-offs in terms of better rep-
resentation and computational efficiency. To ensure a fair
assessment of the system’s performance, it is necessary to
compare the model outputs to the original test set without
any prior processing. However, this approach may result in
a lower BLEU score, as the model generates text based on
preprocessed data. Therefore, we implement a postprocess-
ing step, that involves detokenization and truecasing [30],
to restore the original capitalization.

4. Methodology
The building blocks of our implementation are depicted

in Figure 1. The input video stream is tokenized with a pre-
trained I3D feature extractor. These tokens are fed into the
encoding Transformer layers. The Transformer decoder op-
erates with lowercase and tokenized textual representations.

4.1. Neural architecture

We use a standard transformer encoder-decoder. We
choose an asymmetric encoder-decoder with six encoder
layers and three decoder layers, each with four attention
heads, we select an embedding dimension of 256 and feed-
forward network hidden size of 1024, which corresponds to
ID (17) from Table 3.

ukulele today.
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Figure 1. The input video sequence is fed into a Transformer to
generate the output text sequence.

4.2. Implementation details

In our implementation, we first preprocess the vocabu-
lary as described in Section 3.2, with a vocabulary size of
7000 subwords.

For training, the batch size is set to 32, and we use cross
entropy loss with label smoothing of 0.1. We select the
Adam optimizer, we warm-up the learning rate for the first
2000 updates, and then we apply a cosine decay from 10�3

to 10�7 with warm restart every 1.7 ·104 steps. We train the
model for 105 steps, equivalent to 108 epochs. We perform
validation every two epochs. Our training process takes 3.5
hours on a single NVIDIA GeForce RTX 2080 Ti GPU.

For inference, we adopt steps commonly used in ma-
chine translation and use beam search algorithm to generate
predictions, we choose a beam size of five.



val test
rBLEU BLEU-1 BLEU-2 BLEU-3 BLEU rBLEU BLEU-1 BLEU-2 BLEU-3 BLEU

Ours. 2.79 35.2 20.62 13.25 8.89 2.21 34.01 19.3 12.18 8.03

Table 2. Best scores on How2Sign for Sign Language Translation.

4.3. Evaluation protocol

To measure the performance of our SLT models, we use
BLEU score [37] 2.

The difficulty of the SLT task causes a bias in the
model prediction towards most statistically frequent pat-
terns, such as Example (2) in Table 4. These patterns can in-
flate the BLEU scores without actually translating anything
meaningful. Inspired by [17] we compute reducedBLEU
(rBLEU). This metric consists of removing certain words
from the reference and the prediction before computing the
BLEU score. We create a blacklist of words that are fre-
quently used in the training data but do not contribute much
to the meaning of the sentences. Table 4 shows a compari-
son between rBLEU and BLEU metrics.

Focusing on concrete examples, row (2) in Table 4,
shows that both the prediction and the reference contain the
phrase “In this clip I’m going to show you how to”, which
is one of the frequent patterns on the instructional dataset.
This pattern inflates the BLEU score, while it does not affect
the rBLEU score, which is low, suggesting that sentences
have different meanings.

Our experimental results indicate that rBLEU is a more
reflective indicator of actual performance than traditional
BLEU, for low-resource settings that also have repetitive
patterns, given that it considers mostly semantically mean-
ingful words. In order to provide comparable results with
other works, we also report standard BLEU in our results.

5. Experiments

The performance of our proposed approach is shown in
Table 2. We evaluate our models using the metrics de-
scribed in Section 4.3 and provide examples of generated
spoken language translation sentences.

5.1. Quantitative results

Our implementation achieves results reported in Table 2.
To the authors’ knowledge, these are the first published re-
sults for SLT obtained with the How2Sign dataset. The ta-
ble displays the results of our best configuration, which pro-
vides a baseline from where future work can build upon.

2Other SLT papers use BLEU-4 instead of BLEU. It represents the
same score, we use BLEU for simplicity.

5.2. Qualitative results
We provide a qualitative assessment of the results in Ta-

ble 4, showing a few spoken language translations gener-
ated by our best-performing model. Words used to compute
rBLEU are in bold.

Example (1) demonstrates the ability of our model to
provide detailed translations even for complex words like
“women’s self defense”. Our metrics indicate both high
BLEU and rBLEU scores meaning that the model is gen-
erating a good translation, considering both full sentences
and meaningful words.

However, our results also suggest that this is not always
the case. For instance, in Example (2), BLEU is higher than
rBLEU. As mentioned in 4.3, BLEU score is high due to
the repetitive patterns frequent in the instructional dataset.
Given that high BLEU scores can be misleading due to their
susceptibility to frequent phrases, we emphasize the impor-
tance of using rBLEU instead of BLEU when selecting the
best checkpoint.

The provided examples suggest that the models’ perfor-
mance may depend on the complexity and length of the
signed video. We observed that the model was able to pro-
vide reasonably accurate translations for short sentences,
but not for sentences like Example (4).

Example (5) illustrates the reason behind the dispar-
ity between rBLEU and BLEU metrics, explained in Sec-
tion 4.3. In this case, despite obtaining a high BLEU score
and an accurate translation, the corresponding rBLEU score
is zero due to the reduced number of remaining words for
rBLEU calculation, which is less than four.

Overall, the findings suggest that the model’s quality is
still suboptimal, as demonstrated by Example (3), which has
comparable metrics to the overall performance.

5.3. Hyperparameter search
Transformer under low-resource conditions is highly de-

pendent on hyperparameter settings [4]. Our experiments
show that using an optimized Transformer improves the
translation quality over 3.47 BLEU points and 1.8 reduced
BLEU points compared to the default hyperparameters for
SLT.

Table 3 shows the hyperparameters that we optimize.
Default hyperparameters for SLT come from [8].

A current observation in Transformers is that increasing
the number of parameters will improve the performance.



Values

Text preprocessing {yes, no}
Vocabulary size {1k, 4k, 7k}
Batch size {32, 64}
Learning Rate (LR) {5e-2, 1e-3, 5e-3}
LR scheduler {cosine, inv sqrt}
Warm-up steps {0, 2k, 4k}
Warm restarts period {0,17k, 22k}
Weight Decay {1e-3, 1e-2, 1e-1}
Label Smoothing {0, 0.1}
Dropout {0, 0.1, 0.2, 0.3}
# Layers (encoder-decoder) {2-2, 3-3, 4-2, 6-3}
Embed dim {256, 512}
FFN dim {512, 1024, 2048}
# Attention heads {4, 8}

Table 3. Hyperparameters search space. In bold are the optimal
ones that we found during validation, and underlined are defaults.

ID rBLEU BLEU

(1)
Ref: And that’s a great vital point technique for women’s
self defense. 30.29 38.25
Pred: It’s really a great point for women’s self defense.

(2)
Ref: In this clip I’m going to show you how to tape your
cables down. 24.88 64.53
Pred: In this clip I’m going to show you how to improve
push ups.

(3)

Ref: You are dancing, and now you are going to need
the veil and you are going to just grab the veil
as far as possible. 4.93 8.04

Pred: So, once you’re belly dancing, once you’ve got to
have the strap, you’re going to need to grab the thumb,
and try to avoid it.

(4)

Ref: But if you have to setup a new campfire, there’s
two ways to do it in a very low impact; one is with a
mound fire, which we should in the campfire segment
earlier and the other way to setup a low impact campfire
is to have a fire pan, which is just a steel pan like the top
of a trash can.

0.85 3.79

Pred: And other thing I’m going to talk to you is a little
bit more space, a space that’s what it’s going to do, it’s
kind of a quick, and then I don’t want to
take a spray skirt off, and then I don’t want it to take
it to the top of it.

(5) Ref: So, this is a very important part of the process. 0.0 61.86Pred: It’s a very important part of the process.

Table 4. Qualitative examples from our best-performing model.
In bold the words remaining to compute rBLEU. Corresponding
input frames from examples can be found in Appendix A.2

However, in low-resource languages, increasing the num-
ber of model parameters can hinder performance [47]. We
study this effect by changing the number of layers in the en-
coder and decoder, the number of attention heads, the feed-
forward layer dimension, and embedding dimensions.

Since the optimization of the learning rate (LR) is depen-
dent on the number of parameters of the model, we tune it
together with other hyperparameters related to the architec-
ture size. Furthermore, we introduce the use of LR schedul-
ing of cosine with warm restarts [31], which has been shown
to perform better than alternatives.

Our experiments point to the direction that smaller mod-
els obtain better results, for example using an encoder-
decoder configuration of 2-2, with an embedding dimen-
sion of 256, feed-forward dimension of 512 and 4 heads, the
model achieves 1.37 rBLEU. Due to the fact that the input
data is by far more complex than the output, we choose to
carry out further experiments with both the best symmetric
model and the asymmetric, but a priori we do not observe
much improvement.

Given the observed overfitting on bigger models, we add
regularization by adding dropout, weight decay, and label
smoothing. We observe that adding regularization to big
models outperforms the rest of configurations. For our final
model, with the parameters highlighted in 3 we see substan-
tial improvement by using dropout of 0.3, weight decay of
0.1 and label smoothing of 0.1, obtaining a val rBLEU of
2.79, which improves the best model without regularization
by 1.85 rBLEU.

6. Conclusions
In this work, we made an open-source implementation

that can serve as a first baseline for Sign Language Transla-
tion on the How2Sign dataset. We achieved BLEU score of
8.03, which indicates a certain degree of understanding of
the signed utterances. This value is on-par with the best re-
sults reported for OpenASL [43], the most similar publicly
available dataset of comparable complexity.

Furthermore, we have done an extensive hyperparame-
ter search and shown that tuning is necessary to obtain the
best set of results. The best results are obtained with a big-
ger than baseline Transformer trained with great amounts of
regularization.

Our quantitative and qualitative evaluations have led us
to conclude that rBLEU is a suitable evaluation metric for
similar benchmarks, particularly in cases where datasets are
low-resource with frequent repetitive patterns. In contrast
to the traditional BLEU score, which may be inflated due to
these patterns, rBLEU provides a more accurate evaluation
that better reflects the model’s performance.
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