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Abstract

This work presents a novel framework for chronic wound
assessment and tracking based on deep learning, which
works on RGB images captured with smartphones, avoid-
ing bulky and complicated acquisition setups. The frame-
work integrates mainstream algorithms for medical im-
age processing, including wound detection, segmentation,
and quantitative analysis of area and perimeter. Exper-
iments and clinical validations in Colombia leprosy pa-
tients demonstrate the validity and accuracy of the proposed
framework, with 84.5% precision. Additionally, this pa-
per provides to the scientific community with a new chronic
wounds dataset of 164 images with their respective detec-
tion boxes and segmentation maps.

1. Introduction
Chronic wounds affect 40 million people worldwide.

These skin lesions are often caused by type two diabetes,
cardiovascular affections, and neglected tropical diseases
such as leprosy. Approximately 225,000 new leprosy cases
are diagnosed yearly, with 8.9% occurring in children and
adolescents [18]. Leprosy is a latent healthcare problem,
mainly in tropical developing countries. To cite a particu-
lar case, in Colombia, approximately 350-500 new cases of
leprosy are reported every year due to the Mycobacterium
leprae, and, 383 new cases in 2018 [4].

Chronic wound management involves periodic visual in-
spection by medical personnel for infection control and
moisture balance, where edge and size analysis is used to
determine wound progression and make treatment decisions
[2]. However, incorrect ulcer management can lead to limb
amputations, infection, or even mortality. As occurs in ru-
ral areas due to insufficient medical infrastructures and poor
rural transportation, which leads to infrequent patient visits,
inadequate treatment, and interrupted wound tracking.
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Therefore, the development of computational methods
for the automatic analysis of medical images is a research
trend [3]. Deep learning (DL) algorithms have been em-
ployed to detect and produce chronic wound segmentation
maps on images [5,7,11]. However, DL methods are mainly
designed to work with only one dataset, causing overfit-
ting [17], which can lead to poor performance when these
methods are applied to datasets collected by different clin-
ical centers or populations, that may differ significantly in
terms of acquisition parameters and protocols. Further, DL-
based wound analysis is limited by the lack of publicly
available data for training [13]. Specifically, there are few
wounds datasets from diabetes patients, mainly from Eu-
rope and North America, which means that the model may
not perform as well on patients from other regions, includ-
ing developing countries [9]. This problem is further inten-
sified when considering different types of wounds, such as
leprosy, for which no public data is available. Furthermore,
a computational framework has not yet been developed for
the automatic tracking of leprosy-associated ulcers.

This paper presents “CO2Dnet”, a DL framework de-
signed to detect, segment, measure, and track wounds to
support medical decision-making. This framework works
with RGB images captured by smartphones, outperform-
ing state-of-the-art methods by up to 16% in the F1-score
metric. The “CO2Dnet” has been deployed in an online
platform where medical staff and patients from Colombia
can benefit from temporal wound evolution analysis and a
personalized follow-up of each patient’s condition. This pa-
per also introduces “CO2Wounds”, a labeled dataset of 164
leprosy-associated chronic wound images acquired on pa-
tients from the town of Contratación, Santander, Colom-
bia. The full implementation is available at https://
github.com/simatec-uis/CO2Dnet.

2. Methods

Captured wound images usually contain unnecessary in-
formation around the region of interest, i.e., the actual
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wound. This creates a class imbalance scenario, where a
significant percentage of image pixels correspond to the
background, while only a small portion belong to the wound
[8]. We propose a detection-segmentation strategy within
the CO2Dnet framework to address this issue, and improve
segmentation accuracy. This approach is based on previous
research that has demonstrated that working exclusively on
the region of interest can enhance the performance of seg-
mentation models [14].

Specifically, the proposed CO2Dnet framework receives
RGB images of chronic wounds as input, acquired with
commercial smartphones. It consists of four main steps:
A) data acquisition, B) wound and calibration pattern de-
tection, C) wound segmentation, and D) area and perimeter
calculation. These steps are conducted so that the region of
interest that contains the wound is cropped and resized to
obtain a standardized centered wound image, that is then
segmented to extract the wound. The calibration pattern
is fully characterized in advance so that wound area and
perimeter can be calculated. Moreover, the estimated met-
rics from multiple captures at different dates enable a tem-
poral analysis of the evolution of the chronic wound and,
allow the medical staff to monitor the patient’s condition as
well as the efficiency of the prescribed treatment. Figure 1
depicts a general overview of the CO2Dnet framework.

2.1. Step A: Data Acquisition Protocol

The first step of the framework involves the image acqui-
sition process to build a chronic wound dataset from Colom-
bian leprosy patients. A customized calibration pattern was
designed, which works as a calibration tool to calculate the
area and perimeter of ulcers in the International System of
Units. The shapes in the pattern are used in the detection
and metrics calculation processes, as detailed in Sections
2.2 and 2.4 (Steps B and D, respectively). Additional char-
acteristics of the calibration pattern, i.e., colored squares
were carefully selected, such that the detection network can
easily detect the pattern, due to color contrast. The top row
includes the RGB and CMYK colors. The bottom row con-
tains six colors corresponding to the Fitzpatrick Skin Color
Scale [16]. The squares of the two left columns and the in-
ner right column correspond to 22 colors specially defined
and selected to match ulcer tissue representation as in [22].
Finally, the outer right column contains a gray scale, tradi-
tionally used in imaging systems to calibrate the white and
black sensor responses.

The dataset for wound monitoring can be acquired us-
ing smartphones in communities without adequate medical
assistance or advanced imaging technology. The images
should include a calibration pattern next to the wound. The
data set also provides detection and segmentation maps for
each image.

2.2. Step B: Wound and Calibration Pattern Detec-
tion

This work employs YoloV4 [1] as a detection model to
crop the wound region from images and improve segmenta-
tion results by reducing the impact of irrelevant informa-
tion. The YoloV4 network is trained to detect both the
chronic wound and the calibration pattern. RGB images
from Step A are fed as input to the YoloV4 detection net-
work, which outputs bounding boxes of the regions of inter-
est (wound and calibration pattern) indicated by green and
magenta squares in Fig. 1.

This process can be mathematically modeled as follows.
Let X ∈ RN×M×3 be the input RGB image with N ×M
pixels, and c = [i1, j1, i2, j2] is the boundary box provided
by the YoloV4 network, surrounding the detected object,
where (i1, j1) and (i2, j2) are the top-left and bottom-right
coordinates of the box, respectively. Since, in this work, the
detection network Dθ(·) with parameters θ is adjusted to
detect two objects: the wound and the calibration pattern,
the actual output of the YoloV4 network is

cw, cp = Dθ(X ), (1)

where, cw and cp are the coordinates of the boundary boxes
for the wound region and calibration pattern, respectively.
Then, the boundary boxes are used to crop the image X , so
as to obtain two independent sub-images: the wound Xw ∈
RH×W×3 and the calibration pattern Xp ∈ RH×W×3 as

Xw = CropResize(X , cw), (2a)
Xp = Crop(X , cp), (2b)

where CropResize(·) crops an image according to the
bounding box coordinates, and provides a resized output of
H × W pixels, with H = W = 320. Further, consider-
ing that task-relevant information varies for different image
resolutions [19], the size parameters H ×W for which the
wound image is resized must match the size of the images
used in the segmentation model training.

2.3. Step C: Wound Segmentation

The segmentation step can be seen as a classification
task at pixel level of the wound image Xw ∈ RH×W×3,
where each pixel in the image is associated with a class
(wound/background), yielding a binary map of the wound
region. Given a segmentation network Sϕ(·) and its net-
works parameters ϕ, the estimated segmentation map can
be mathematically modeled as

Ŷ = Sϕ(Xw), (3)

where Ŷ ∈ {0, 1}H×W is the estimated segmentation map,
with one values indicating that a pixel corresponds to the
wound region, and zero otherwise. Based on our previous
analysis [14], the segmentation model used in this work fol-
lows a U-net architecture.
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Figure 1. Overview of the proposed CO2Dnet deep learning-based framework for automatic segmentation and measurement of chronic
wounds in RGB images acquired with traditional smartphones.

2.4. Step D: Calculation of Wound Area and
Perimeter

The estimated binary segmentation map Ŷ of the wound
region and the calibration pattern region Xp are used to cal-
culate the area and perimeter of the wound. This process
requires the conversion factor from image pixels to centime-
ters, so as to estimate the wound area (Aw) and perimeter
(Pw). Since the dimensions of the calibration pattern are
known a priori, as well as the input image size, the relation
between camera pixels and centimeters can be estimated via
cross-multiplication. Specifically, we first employ a cir-
cle detection algorithm to measure (in pixels) the radius
Rp of the circle in the detected calibration pattern Xp, as
Rp = calculateRadius(Xp). Then, since the actual radius
of the circle is known, i.e., R = 1.35 cm, the conversion
factor can be calculated as Cf = R

Rp
. Thus, the conversion

factor is used to calculate the area Aw and perimeter Pw of
the wounds from the segmented images Ŷ as

Aw = Cf∥Ŷ ∥0, Pw = C2
f · P (Ŷ ), (4)

where, ∥·∥0 is the ℓ0 norm, namely, the amount of non-zero
values, and P (·) denotes the contour perimeter of the binary
segmentation map. To compute the contour perimeter of a
closed shape, we employ the arcLength(·) function included
in the OpenCV libray. The input parameters of arcLength(·)
function are an input vector of 2D points, that describes the
shape to analyze, and a flag indicating whether the shape is
closed or not.

3. Results and Discussion

This section evaluates the performance of the CO2Dnet
proposed framework for segmentation and tracking of
chronic wound on an RGB image data set acquired from
leprosy patients. All simulations were implemented in
Python with Tensorflow 2.3 and conducted on an Nvidia
Quadro Tesla T4 GPU with 16 GB of memory. Image data
sets and evaluation metrics employed in these experiments
are described below. The framework performance was eval-
uated using three metrics: precision, recall, and F1-score.
We refer the interested reader to [12] for a detailed explana-
tion on the calculation of these metrics.

3.1. Datasets and Metrics

The performance of the proposed framework was eval-
uated using two chronic wounds datasets: first, the new
“CO2Wounds” dataset constructed, manually labelled, and
published in this project; second, the public database
“Chronic wounds” (CW-DB) [10]. Specifically, the
CO2Wounds, whose images contain the designed calibra-
tion pattern, were used to evaluate all steps of the proposed
framework, i.e., detection, segmentation, as well as area and
perimeter estimation. While the CW-DB was used to eval-
uate the segmentation step. In the following, a detailed de-
scription of both datasets is provided.

3.1.1 Datasets

The new CO2Wounds dataset contains 164 chronic wound
RGB images from leprosy patients, compiled in this study,
following the acquisition process described in Step A of the
proposed framework (Section 2.1), along with their binary
segmentation maps. The images were acquired by the Lep-
rosy program control from the Sanatorio de Contratación in
Colombia. Images from 69 consenting patients were col-
lected by medical staff during 7 months (November 2021 to
June 2022), using different smartphone models and the pro-
vided calibration pattern. The public dataset is available1,
and it is constantly updated.

The public Chronic wounds database (CW-DB) con-
tains 188 RGB images of diabetes patients from Poland and
their corresponding wound segmentation maps.

3.2. Framework Evaluation

To provide a visual representation of the results ob-
tained by each step of the proposed framework, Fig. 2
illustrates the images resulting from Steps A, B, C, and
D for six different wound images in the CO2Wounds
data set. Specifically, the first column presents the wound
images acquired following the data protocol proposed in
Step A (Section 2.1), which are the input to the proposed
framework. The second column illustrates the results of
Step B (Section 2.2), where the wound and calibration
pattern are detected; specifically, the calibration pattern

1CO2Wounds database: https : / / doi . org / 10 . 17632 /
nkw5gx57hw.
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Figure 2. Step-by-step visual results of the proposed framework
for six images from the CO2Wounds data set (rows). Each column
corresponds to one step of the framework.

is highlighted by the magenta box, while the wound is
enclosed by the lime green box. The third column depicts
the resulting binary wound segmentation maps from Step
C (Section 2.3). Finally, the fourth column presents the
numerical results for wound area and perimeter estimation
from Step D (Section 2.4). These results show that the
proposed framework is able to work on images of different
wound severity, and locations within the lower limbs. Also,
in all cases, both, the wound and the calibration pattern
were appropriately detected. Further, when more than one
wound is present in the image, as in the last row of Fig. 2,
the proposed framework is able to detect and segment both
of them.

In addition, the performance of the proposed framework
was compared with respect to state-of-the-art segmenta-
tion methods for the analysis of chronic wounds. Specif-
ically, the following segmentation methods were consid-
ered: VGG16 [6], SegNet [21], MobileNetV2 [20], and
Unet [15]. All methods were implemented and tested us-
ing the CO2Wounds data set acquired in this work, follow-
ing the network configurations suggested by the authors of
each work. Average results for 10 runs of each model are
reported in Table 1, where it can be seen that the proposed
framework outperforms its counterparts by at least 16%,
1.8%, and 11.2% in F1-score, precision, and recall, respec-
tively.

Table 1. Segmentation comparison with state-of-the-art and deep-
learning-based segmentation methods on the CO2Wounds data set.

Methods (↑) Metrics (mean±std )
F1-Score Precision Recall

VGG16 [6] 50.6 68.7 53.9
SegNet [21] 46.4 68.4 51.5
MobileNetV2 [20] 54.1 65.9 70.7
Unet [15] 64.3 82.7 66.7
CO2Dnet (Ours) 80.3 84.5 81.9

Figure 3. Tracking results of four leprosy chronic wounds using
the proposed framework.

3.3. Clinical Tracking Validation

Figure 3 illustrates examples of the wound tacking re-
sults with the proposed framework deployed online, used
by nurse practitioners from the Leprosy control program of
Sanatorio de Contratacion, in the Colombian town of Con-
tratacion, Santander, which are the main users of this plat-
form. In particular, the evolution of four different ulcers is
presented in terms of the area and perimeter, in cm2 and
cm, respectively. In this way, medical staff can make in-
formed decisions related to the treatment. Also, the seg-
mented wound image is included at the top for each date,
corresponding to the activation maps of each chronic wound
image in the last convolutional layer of the segmentation
neural network (step C in Section 2.3). Since image acqui-
sition and uploading dates are independent of the algorithm,
the top two cases have five records each, while the cases at
the bottom have four records each.

4. Conclusions
The CO2Dnet, a deep learning-based framework for

chronic wounds assessment and tracking has been pre-
sented. The proposed framework includes four steps that in-
clude: image acquisition, wound and calibration pattern de-
tection, wound segmentation, and wound area and perime-
ter estimation, where detection and segmentation employ
deep neural networks with transfer learning and data aug-
mentation schemes to avoid overfitting and improve perfor-
mance. Additionally, we presented a new leprosy chronic
wound dataset (CO2Wounds) to provide more variability in
chronic wound data sets to enable future works in this con-
text. Experimental results validate the proposed framework,
with 80.3% F1 score, 84.5% precision, and 81.9% recall
over the CO2Wounds dataset. These results overcome those
from state-of-the-art segmentation methods (VGG16, Seg-
Net, MobileNetV2, and U-net). Moreover, temporal anal-
ysis of the wounds is allowed by the proposed calibration
pattern, which enables wound area and perimeter estima-
tion. In this way, wounds can be monitored over time.



References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020. 2

[2] Steven Bowers and Eginia Franco. Chronic wounds:
evaluation and management. American family physician,
101(3):159–166, 2020. 1

[3] Camilo Calderón, Karen Sanchez, Sergio Castillo, and
Henry Arguello. Bilsk: A bilinear convolutional neural
network approach for skin lesion classification. Computer
Methods and Programs in Biomedicine Update, 1:100036,
2021. 1

[4] Nora Cardona-Castro. Leprosy in colombia. Current Tropi-
cal Medicine Reports, 5(2):85–90, 2018. 1

[5] Sawrawit Chairat, Tulaya Dissaneewate, Piyanun Wangku-
langkul, Laliphat Kongpanichakul, and Sitthichok
Chaichulee. Non-contact chronic wound analysis us-
ing deep learning. In 2021 13th Biomedical Engineering
International Conference (BMEiCON), pages 1–5. IEEE,
2021. 1

[6] Manu Goyal, Moi Hoon Yap, Neil D Reeves, Satyan Rajb-
handari, and Jennifer Spragg. Fully convolutional networks
for diabetic foot ulcer segmentation. In 2017 IEEE interna-
tional conference on systems, man, and cybernetics (SMC),
pages 618–623. IEEE, 2017. 4

[7] Jui-Tse Hsu, Yung-Wei Chen, Te-Wei Ho, Hao-Chih Tai, Jin-
Ming Wu, Hsin-Yun Sun, Chi-Sheng Hung, Yi-Chong Zeng,
Sy-Yen Kuo, and Feipei Lai. Chronic wound assessment and
infection detection method. BMC medical informatics and
decision making, 19(1):1–20, 2019. 1

[8] Justin M Johnson and Taghi M Khoshgoftaar. Survey on
deep learning with class imbalance. Journal of Big Data,
6(1):1–54, 2019. 2

[9] Michał Krecichwost, Joanna Czajkowska, Agata Wijata,
Jan Juszczyk, Bartłomiej Pyciński, Marta Biesok, Marcin
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Kouamé, Olivier Meyrignac, and Adrian Basarab. Cx-dagan:
Domain adaptation for pneumonia diagnosis on a small chest
x-ray dataset. IEEE Transactions on Medical Imaging, 2022.
1
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